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In this set of notes we review linear and convex programming and Lagrangian duality. After the review introduce
models of good allocation in indivisible and divisible setting and define the Walrasian equilibrium in both contexts.
We show that in both cases equilibrium allocations correspond to the optimal arguments of the primal of the equilib-
rium allocations, while the optimal variables of the corresponding dual correspond to the equilbirium prices.

1 Linear and Convex Programming Duality

1.1 Lagrangian Duality Theory

We provide the machinery given in this section without proof. If you are interested to understand some of the
tools given in this section you can explore courses such as Numerical Optimization or even Differential Geometry.
We present here a generalization of the Lagrangian Duality Theorem, called the Karush–Kuhn–Tucker theorem.
These tools will then allow us to derive important facts about Linear and Convex programming.

Consider the optimization problem P of the following form called the primal problem:

min
x

f0(x) (1)

Constrained by fi(x) ≤ 0 ∀i ∈ {1, . . . ,m} (2)

And fi(x) = 0 ∀i ∈ {m+ 1, . . . , p} (3)

where fi’s are any functions. We define the Lagrangian function, L, corresponding to the above optimization
problem P as follows:

L(x,λ,µ) = f0(x) +
m∑
i=1

λifi(x) +

p∑
i=m+1

µifi(x) (4)

(5)

where λ and µ are called slack variables. These variables are called slack variables because by setting them wisely
we obtain a function whose minimum corresponds exactly to that of the problem P. We now show how we should
set these slack variables such as to obtain a function whose minima corresponds to the minima of the optimzation
problem P.

Observe that for every feasible x, λ ≥ 0 and µ, f0(x) is bounded below by the Lagrangian, that is:

∀λ ∈ Rm
+ , µ ∈ Rp−m f0(x) ≥ L(x,λ,µ) (6)
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The above inequality implies the following:

f0(x) ≥ max
λ≥0,µ

L(x,λ,µ) (7)

Before we move further, let’s look at the quantity below:

max
λ≥0,µ

L(x,λ,µ) = max
λ≥0,µ

f0(x) +
m∑
i=1

λifi(x) +

p∑
i=m+1

µifi(x) (8)

= f0(x) + max
λ≥0

m∑
i=1

λifi(x) + max
µ

p∑∑∑
i=m+1

µifi(x) (9)

= f0(x) +
m∑
i=1

max
λi≥0

λifi(x) +

p∑∑∑
i=m+1

max
µi

µifi(x) (10)

Observe the following:

max
λi≥0

λifi(x) =

 0 if fi(x) ≤ 0

∞ Otherwise
(11)

max
µi

µifi(x) =

 0 if fi(x) = 0

∞ Otherwise
(12)

That is, by taking the maximum over the slack variables (λ,µ) we essentially obtained a function where all
feasible values x of the program P corresponds to the values of f0(x), and to infinity for all infeasible values. As a
result, we have:

min
∀i∈{1,...,m}fi(x)≤0
∀i∈{m+1,...,p}fi(x)=0

f0(x) = min
x

max
λ≥0,µ

L(x,λ,µ) (13)

We now introduce one of the most important results in Operations and Research, the Karush–Kuhn–Tucker
theorem. The Karush–Kuhn–Tucker theorem is extremely important as it allows us to transform a constrained opti-
mization problem to an unconstrained one.

Theorem 1.1. Karush–Kuhn–Tucker theorem
Let L(x,λ,µ) be the Lagrangian function corresponding to the optimization problem P. If (x∗,λ∗,µ∗) is a saddle
point of L with λ∗ ≥ 0, then x∗ is optimal for the program P. Suppose that for all i = 1, . . . , p, fi(x)’s are all convex
and there exists a x such that ∀i = 1, . . . ,m, fi(x) ≤ 0, then the optimal x has an associated (µ∗,λ∗) such that
(x∗,λ∗,µ∗) is a saddle point of L(x,λ,µ).

We now link the theorem we have just studied to another cool result in game theory. In 2 person zero-sum
games, a Nash equilibrium is saddle-point of the payoff function. One important results from zero-sum games is the
Minimax theorem:
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Theorem 1.2. Minimax Theorem Let X ⊂ Rn and Y ⊂ Rm be compact convex sets. If f : X × Y → R is a
continuous function that is concave-convex, i.e. f(·, y) : X → R is concave for fixed y, and f(x, ·) : Y → R is
convex for fixed x Then we have that

max
x∈X

min
y∈Y

f(x, y) = min
y∈Y

max
x∈X

f(x, y)

The implication of the above theorem is: minxmaxλ≥0,µ L(x,λ,µ) = maxλ≥0,µminx L(x,λ,µ), assuming
that our constraints are all convex which makes the set of feasible inputs for the Lagrangian compact and convex (+
the Lagrangian can be shown to be convex concave), our original primal program can be then expressed as a different
program where with variables coresponding to the slack variables. This is the intuition behind deriving another
program called the dual from the lagrangian. The dual variables often have meaning and can be used to solve for an
additional problem.

The Lagrange dual function of a program P with Lagrangian function L is defined as:

g(λ,µ) = inf
x
L(x,λ,µ) (14)

Now, consider the following optimization program called the dual program of the primal program:

max
λ,µ

g(λ,µ) (15)

Constrained by λ ≥ 0 (16)

Note that the dual function g is concave, even when the initial problem is not convex, because it is a point-wise
maximum of affine functions.

1.2 Linear Programming

Linear Programming is a mathematical method that allows to find the variables that maximize or minimize a
function that is constrained by a set of linear constraints. That is, linear programming refers to the set of methods
that allow us to solve problems defined by the inputs (A, b.c) and that can be expressed in the following canonical
form :

Primal:

min
x

bTx (17)

Constrained by ATx ≥ c (18)

And x ≥ 0 (19)

We will now derive the dual program of the problem above using the machinery introduced in the previous
section. Since the above expression is the canonical form for any linear program, the dual that we derive will also
give us a formula to easily find the dual of any linear program. Let’s first calculate the Lagrangian of the above
program:
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L(x,λ,µ) = bTx+ λT (c−ATx)− µTx (20)

= xTb+ cTλ− xTAλ− xTµ (21)

= cTλ+ xT (b−Aλ)− xTµ (22)

We can then calculate the dual objective function g:

g(λ,µ) = inf
x
{cTλ− xT (Aλ− b)− µTx} (23)

Notice that this function is exactly Lagrangian form of the following maximization problem:

max
λ

cTλ (24)

Constrained by Aλ ≤ b (25)

and µ ≥ 0 (26)

Adding to this program the dual program feasibility constraint, we obtain the dual of the standard form of
Linear programming where we renamed the slack variable λ as y. The dual variables y are called the dual variables.

Dual:

max
y

cTy (27)

Constrained by Ay ≤ b (28)

And y ≥ 0 (29)

Note that different authors might refer to the minimization problem as the dual and the maximization problem
as the primal.

The expressions cTx and bTy are respectively called the objectives of the primal and dual problems. Solutions
x∗ for the primal that satisfy the primal constraints Ax∗ ≤ b, x∗ ≥ 0 are called feasible solutions. Similarly,
solutions y∗ for the dual that satisfy the dual constraints ATy∗ ≤ c, y∗ ≥ 0 are called feasible solutions. y∗. A
linear program is said to be a feasible program iff there exists variables for the program that are feasible, otherwise
the program is said to be an infeasible program.

A feasible variable x∗ for the primal is called optimal iff ∀x ∈ {x |Ax ≤ b, x ≥ 0}, cTx∗ ≥ cTx. A
linear program in the primal form is said to be bounded iff ∀x ∈ {x |Ax ≤ b, x ≥ 0}, cTx <∞.

A feasible variable y∗ for the dual is called optimal iff ∀y ∈ {y | ATy ≤ c, y ≥ 0}, bTx∗ ≥ bTx. A
linear program in the primal form is said to be bounded iff ∀y ∈ {y |ATy ≤ c, y ≥ 0}, bTy <∞

We do not discuss algorithms to solve linear programs in this presentation, however there are many polynomial
time algorithms to solve linear programs such as the simplex or big M algorithms. These algorithms generally take
as input (A, b, c) and return a tuple (x∗,y∗) which are respectively the optimal variables for the primal and dual
problems.

Below are the two most important results from Linear Programming Duality that confirm our initial motivation
of the dual using the minimax theorem:
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Theorem 1.3. Weak Programming Duality
Let x be any feasible solution to the primal program P, and (λ,µ) be any feasible solution to the dual program of P.
Then f0(x) ≥ g(λ,µ)

Theorem 1.4. Strong Programming Duality for Linear Programming
Let x be any feasible solution to the primal of a linear program P, and (λ,µ) be any feasible solution to the dual
program of P. Let f0(x) be the objective of the primal and let g(λ,µ) be the objective of the dual. Let (x∗,λ∗,µ∗)
be the optimal variables for the primal and dual respectively, then f0(x∗) = g(λ∗,µ∗).

1.3 Convex Programming

Convex Programming is a mathematical method that allows to find the variables that maximize or minimize a
function that is constrained by a set of convex inequality constraints and affine equality constraints. That is, convex
programming refers to the set of methods that allow us to solve problems defined by the inputs (f0, f1, . . . , fm) and
that can be expressed in the following canonical primal form:

Primal:

min
x

f0(x) (30)

Constrained by fi(x) ≤ 0 ∀i ∈ {1, . . . ,m} (31)

And hi(x) = 0 ∀i ∈ {m+ 1, . . . , p} (32)

Note that different authors might refer to the minimization problem as the dual and the maximization problem
as the primal.

It is harder to derive the dual in closed form like we did for linear programming, however this can be done by
going through the lagrangian or using shortcuts with the help of Frenchel conjugates. More information about finding
the dual of a convex primal program can be found in section 3 of [1].

Definition 1.5. Slater’s condition We say that the problem satisfies Slater’s condition if it is strictly feasible, that is:

∃x0 ∈ D : fi (x0) < 0, i = 1, . . . ,m, hi (x0) = 0, i = 1, . . . , p

We can replace the above by a weak form of Slater’s condition, where strict feasibility is not required whenever the
function fi is affine.

For our purposes, we present the following duality theorem to confirm our intuition from the minimax theorem
that a dual exists with the same objective value.

Theorem 1.6. Strong duality via Slater condition
If the primal problem (8.1) is convex, and satisfies the weak Slater’s condition, then strong duality holds. That is, let
(x∗,λ∗,µ∗) be the optimal variables for the primal and dual respectively, then f0(x∗) = g(λ∗,µ∗).

2 Combinatorial Auction Markets

Combinatorial Auctions are a type of smart market, in that they are built by researchers and engineers alike in
order to solve complex allocation problems. Combinatorial auctions were first proposed by Rassenti, Smith, and
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Bulfin (1982), for the allocation of airport landing slots [2]. In combinatorial auctions, agents can place bids on
discrete/indivisible sets of items rather than just individual items (from where the name combinatorial, since bids are
reported on a combination of items).

Combinatorial auction markets can be designed with different desiderata in mind. As a result, it is not possible to
define a one size fits all "equilibrium outcome" condition. However, for our purposes we will consider the Walrasian
equilibria of such markets and study the computational aspects of such markets.

2.1 Market Elements

A combinatorial auction market consists of:

1. Finite set of n heterogeneous bidders [n]

2. Finite set of m possibly interrelated items/goods [m]. WLOG, we assume that there is only one unit of a good
in the market.

3. Each bidder i ∈ [n] has

• a value function vi : 2[m] → R+ which takes as input a subset of the items or goods and outputs a value
that describes the preference of the bidder for the subset of goods in monetary terms. That is the value
function only describes the maximum amount that the bidder is willing to pay for the subset of goods.

• a utility function ui : 2[m] → R+ defined as ui(S;p) = vi(S)−
∑

j∈S pj . This function is parametrized
by the prices of the goods p, takes a subset of goods as input and returns the utility derived by the bundle.

4. Note that in this setting bidders have no budgets, they can spend as much as they want. The feasibility constraint
in this setting is that bidders will never pay more than their value for a bundle.

2.2 Outcome of the Market

An allocation X is a map from the powerset of goods, 2[m], to buyers, [n], represented as a matrix, s.t. xiS ∈
{0, 1} denotes whether if a subset of the goods S ⊆ [m] has been allocated to buyer i ∈ [n]. Goods are assigned
prices p ∈ Rm.

An allocation is feasible iff:

1. no more than the total number of goods available are allocated, i.e., ∀j ∈ [m],
∑

S∈2[m] : j∈S

∑
i∈[n]

xiS ∈ {0, 1}

2. every buyer is allocated only one bundle/subset of the goods, i.e., ∀i ∈ [n],
∑

S∈2[m]

xiS ∈ {0, 1}

An allocation X∗ is welfare maximizing iff ∀S ′ ⊆ [m],
∑

S∈2[m]

x∗iSvi(S) ≥ vi(S
′
). A combinatorial market

outcome (X,p) is welfare maximizing iffX is welfare maximizing and p is feasible.
An outcome is a tuple (X,p) consisting of allocation and prices for goods respectively. An outcome is feasible

iff:

1. the allocation is feasible
2. the price of the bundle allocated to a buyer is less than or equal to the value of that bundle, i.e. ∀i ∈

[n],
∑

S∈2[m]

∑
j∈S

xiS pj ≤
∑

S∈2[m]

xiSvi(S)
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2.3 Equilibrium

The demand set function (i.e., Marshallian demand) of a bidder i, Di : Rm → 2[m], takes as input prices p and
returns the utility maximizing set of goods at given prices such that Di(p) = argmax

S⊆[m]

ui(S;p)

A feasible outcome (X∗,p∗) is called a Walrasian equilibrium iff:

1. the allocation given by the outcome is equal to the demand set of bidder i at prices p∗ , i.e., ∀i ∈ [n],
∑
i∈[n]

xiSS =

Di(p
∗)1

2. goods that are not allocated are priced at 0, i.e., ∀[m] ∈ [m],
∑

S⊆[m] : j∈S

∑
i∈[n]

xiS = 0⇒ pj = 0

2.4 Solving for Equilibria: Linear Programming Duality

It turns out that Walrasian equilibria of Combinatorial markets can be obtained through linear programming.
We first present a welfare maximizing program that provides allocations.

max
X

∑
i∈[n]

∑
S⊆[m]

xiSvi(S) (Welfare Maximization Objective) (33)

∀j ∈ [m],
∑

S⊆[m] : j∈S

∑
i∈[n]

xiS ∈ {0, 1} (No Goods Over-Allocated) (34)

∀i ∈ [n],
∑
S∈2[m]

xiS ∈ {0, 1} (One Bundle Allocated per Buyer) (35)

∀i ∈ [n], S ∈ 2[m] xiS ∈ {0, 1} (Variable Constraint) (36)

We now propose a linear programming relaxation of the winner determination problem. The only difference
between this relaxed setting and the winner determination problem as we previously defined it, is that bidders can
be allocated fractions of a bundle. The feasibility constraints are still the same but are recast to conform to this
divisibility relaxation.

Primal

max
X

∑
i∈[n]

∑
S⊆[m]

xiSvi(S) (37)

∀j ∈ [m],
∑

S⊆[m] : j∈S

∑
i∈[n]

xiS ≤ 1 (38)

∀i ∈ [n],
∑
S∈2[m]

xiS ≤ 1 (39)

∀i ∈ [n], S ∈ 2[m] xiS ≥ 0 (40)

Note that although this is a linear program and linear programs are solvable in polynomial time, the variable
matrix X is of exponential size (n × 2m). As a result, in order to solve this LP efficiently it is required to store
efficiently or simplify the valuations of the buyers such that the matrix of variables becomes of polynomial size.

1 ∑
i∈[n]

xiSS is a slight abuse of notation since S is a set and we are multiplying it by a number. In this case you think of xiSS as an

indicator function which is equal to S if xiS is equal to 1 and ∅ otherwise.
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The dual of this program is given by:
Dual

min
u,p

∑
i∈[n]

ui +
∑
j∈[m]

pj (41)

∀i ∈ [n], S ⊆ [m] ui +
∑
j∈S

pj ≥ vi(S) (42)

∀i ∈ [n], ui ≥ 0 (43)

∀j ∈ [m], pj ≥ 0 (44)

(45)

Note: variables u correspond to the constraints given by equation (39) in the primal, while variables p corre-
spond to constraints given by equation (38) in the primal.

The use of the letters u and p in the dual as variables are purposeful. Before we interpret these two programs we
have just proposed, we introduce the concept of a Walrasian equilibrium which will help us interpret the programs.

Primal: The objective of the primal is to find an allocation of goods that maximizes utilitarian social welfare
constrained by the feasibility constraints on the allocation. This approach works in finding the allocations correspond-
ing to Walrasian equilibria because as we will discuss Walrasian equilibria in this setting are welfare maximizing.

Dual: The dual variables u can be interpretted as the utility achieved by the bidders, while the variables p can
be interpretted as the prices that enforce the allocation given by the primal. Enforce in this context means that if
we were to sell our goods by posting prices p instead of auctioning them, under the assumption that the bidders are
rational and want to maximize their utility, the allocation of goods to buyers would be exactly the allocation given
by the primal. The objective of the primal is also equal to utilitarian welfare at equilibrium, this makes sense the
objective is exactly the definition of welfare i.e., revenue of the auctioneer + utility of buyers. The objective here is
to minimize welfare rather than maximizing it, since the variable we have to compute are not the allocation but rather
the values that make up this utilitarian social welfare. Constraint (42) in the dual corresponds exactly to the definition
of utility in our combinatorial auction market model.

Theorem 2.1. First Welfare Theorem - Indivisible Items Let (X∗,p∗) be a Walrasian Equilibrium, then the allo-
cationX∗ maximizes social welfare. Furthermore,X maximizes social welfare over all fractional allocations. That
is, the welfare obtained by the indivisible equilibrium allocation will be higher than the welfare obtained by any
divisible allocation.

Proof In a Walrasian equilibrium, each bidder receives his demand. Therefore, for every bidder i and every
bundle S, we have vi (S∗i ) −

∑
j∈S∗i

p∗j ≥ vi(S)−
∑

j∈S p
∗
j . since the fractional solution is feasible to the LPR, we

have that for every bidder i,
∑

sX
∗
i,S ≤ 1 (Constraint 11.5 ), and therefore

vi (S
∗
i )−

∑
j∈S∗i

p∗j ≥
∑
S⊆M

X∗i,S

(
vi(S)−

∑
j∈S

p∗j

)

The theorem will follow from summing the above inequality over all bidders, and showing that
∑

i∈N
∑

j∈S∗i
p∗j ≥∑

i∈N,S⊆M X∗i,S
∑

j∈S p
∗
j . Indeed, the left-hand side equals

∑m
j=1 p

∗
j since S∗1 , . . . , S

∗
n is an allocation and the prices of
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unallocated items in a Walrasian equilibrium are zero, and the right-hand side is at most
∑m

j=1 p
∗
j , since the coefficient

of every price p∗j is at most 1.

Theorem 2.2. Second Welfare Theorem - Indivisible Item If an integral solution exists to the primal of the linear
program, then a Walrasian equilibrium whose allocation is the given solution also exists. That is, any Welfare
Maximizing outcome can be represented as a Walrasian equilibrium .

Proof: An optimal integral solution for LPR defines a feasible efficient allocation S∗1 , . . . , S
∗
n. Consider also an

optimal solution p∗1, . . . , p
∗
n, u

∗
1, . . . , u

∗
n to DLPR. We will show that S∗1 , . . . , S

∗
n, p
∗
1, . . . , p

∗
n is a Walrasian equilibrium.

Complementary-slackness conditions are necessary and sufficient conditions for the optimality of solutions to the
primal linear program and its dual. Because of the complementary-slackness conditions, for every player i for which
xi,S∗i > 0 (i.e., xi,S∗i = 1 ), we have that Constraint (11.8) is binding for the optimal dual solution, i.e.,

u∗i = vi (S
∗
i )−

∑
j∈S∗i

p∗i

Note that in the indivisible setting we are not guaranteed the existence Walrasian equilibria below is a counter-
example to confirm this claim:

Consider two buyers, Alice and Bob, and two items {a, b}. Alice has a value of 2 for every nonempty set of
items, and Bob has a value of 3 for the whole bundle {a, b}, and 0 for any of the singletons. The optimal allocation
will clearly allocate both items to Bob. Therefore, Alice must demand the empty set in any Walrasian equilibrium.
Both prices will be at least 2; otherwise, Alice will demand a singleton. Hence, the price of the whole bundle will be
at least 4, Bob will not demand this bundle, and consequently, no Walrasian equilibrium exists for these players.
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3 Fisher Market Model

The Fisher market model is the first model of a market that proves that a competitive equilibrium exists in a
market, that is, there exists prices and allocation of goods that maximize the utility of buyers and clears the market.
In other words, the fisher market proves that in a market prices exist such that the supply is equal to demand.

3.1 Market Elements

The market consists of:

1. Finite set of n heterogeneous buyers [n].

2. Finite set of m heterogeneous good types [m].

3. Each buyer i ∈ [n] is characterized by:

(a) a budget bi ∈ R. We assume that budgets are normalized
∑n

i=1 bi = 1.

(b) a utility function, ui : Rm → R+, giving the utility that buyer i derives from each bundle of goods.

4. WLOG, we assume that there is only one unit of each good j ∈ [m] and that each good is demanded by at
least one person. The results/solutions we provide in this section can be applied to the more general settings in
which the number of copies of each good is different than 1 and there are goods that are not demanded.

3.2 Outcome of the Market

An allocation X is a map from goods to buyers, represented as a matrix, s.t. xij ≥ 0 denotes the amount of
good j ∈ [m] allocated to buyer i ∈ [n]. Goods are assigned prices p ∈ Rm. Note that prices are anonymous, in
that all copies of good j are assigned the same price pj .
An allocation is feasible iff

• no more than 1 unit of a good j ∈ [m] is allocated in total, across all buyers,
∑
i∈[n]

xij ≤ 1 and

• buyers do not spend more than their budget: i.e., p · xi ≤ bi, for all i ∈ [n], where xi denotes the row vector
corresponding to the allocation of buyer i in the matrixX .

An outcome is a pair (X,p) consisting of an allocation and prices respectively.

3.3 Equilibrium

An outcome (X∗, p∗) is utility maximizing iff no buyer would prefer a different feasible allocation of goods
than theirs, at the outcome’s prices, that is ∀i ∈ [n],xi, ui(x

∗
i ) ≥ ui(xi).

For any outcome (X,p), we define the demand for good j as
n∑
i=1

xij and the supply of good j as 1 (since we

assumed that there is 1 unit of each good).

An outcome (X,p) is market clearing iff the demand of each good is equal to its supply, i.e.
n∑
i=1

xij = 1,

An outcome is called a Walrasian equilibrium iff it is feasible, utility maximizing and market clearing. If
there are goods that buyers do not demand, then those goods must be priced at zero. i.e. ∀i ∈ [n],

∑
i∈[n] xij = 1

and
∑

j∈[m] pj(
∑

i∈[n] xij − 1)
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The existence of the equilibrium for any continuous utility functions can be shown through the use of Sperner’s
lemma2. Sperner’s lemma is a combinatorial analog of Brouwer’s fixed point theorem, which posits the existence
of a fixed of a function in a very general setting. This proof however is non-constructive in that we cannot use it to
compute an equilibrium outcome of the Fisher market. We will provide a convex program to compute an equilibrium
for the Fisher Market for any continuous concave utility functions. This also is a constructive proof of the existence
of an equilibrium for the Fisher Market for any continuous concave utility function since the convex program is
guaranteed to have an optimal value.

4 Computing Equilbria: The Eisenberg-Gale Program

It turns out that the convex program that Edmund Eisenberg and Dave Gale provided for the Pari-mutuel Bet-
ting model provides a solution to Fisher Markets with linear utility functions[3]. While the primal Eisenberg-Gale
program captures the equilibrium allocations, the dual of the program captures the equilibrium prices:

Primal

max
X

n∑
i=1

bi log

(
m∑
j=1

vijxij

)
(46)

∀i ∈ [n],
m∑
j=1

xij ≤ 1 (47)

∀i ∈ [n], j ∈ [m] xij ≥ 0 (48)

Dual

min
p,β

m∑
j=1

pj −
n∑
i=1

bi log(βi) (49)

∀i ∈ [n], j ∈ [m] pj ≥ vijβi (50)

Notice that we can find any equilibrium allocation without knowing the prices (i.e., they are not part of the
primal).

Let’s give a meaning to these programs:
First note that Nash Social Welfare is defined as the budget weighted geometric mean of the utility of buyers

that is:

SWNSW (u; b) =

∏
i∈[n]

ubii

 1∑
i∈[n] bi

(51)

Primal: Maximizing the budget weighted log of utilities, is equivalent to maximizing the geometric mean of
the utilities weighted by the budgets. This objective actually corresponds the Nash Social Welfare objective, which
when maximized also maximizes the individual utilities constrained by the budget they are weighted by. The first

2https://en.wikipedia.org/wiki/Fisher_market#cite_note-3
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constraint who associated dual variable are the prices is the market clearance condition, while the second constraint
is simply the non-negativity of allocations (required for the boundedness of the program.

Dual: By the strong theorem of duality we know that the objective of the dual must be equal to the primal at
the optimal values. This means that the objective function captures the optimal Nash Social Welfare. However as
opposed to finding the allocation that maximizes Nash social welfare, in the dual we are instead trying to find values
for prices (variables p) and costs of unit of utility (variables β) such that Nash Social welfare is minimized. One
interesting thing to note is that the gradient of the objective function corresponds to excess demand which means that
solving this program through gradient descent is equivalent to solving it with Tatonnement.

We now generalize the Eisenberg-Gale convex program so that it can provide a solution for any continuous
concave utility functions and provide a proof that it provides a solution to the Fisher Market with continuous, concave,
homogeneous utility functions .

Theorem 4.1. Let n be the number of buyers and m be the number of goods in a Fisher market. If the utility
function ui for any consumer i is homogeneous of degree k

[
i.e., ∀x ∈ Rm λ > 0, ui(λx) = λkui(x)

]
and concave

[i.e., ∀x,y ∈ Rm, λ ∈ (0, 1), ui(λx+ (1− λ)y) ≥ λui(x) + (1− λ)y], then the following program computes
equilibrium allocations:

max
X

n∑
i=1

bi log (ui (xi)) (52)

∀j ∈ [m],
n∑
i=1

xij ≤ 1 (53)

∀i ∈ [n], j ∈ [m] xij ≥ 0 (54)

and the dual variable corresponding to constraint (53) corresponds to the equilibrium prices associated with the
equilibrium allocation determined by the program.

Proof:
Given a homogenenous function of degree k, transform it to a homogeneous function of degree 1 by using a mono-
tonic transformation which preserves the underlying preference relationship of the utility function. That is, any
homogeneous function f(x) of degree k, can be transformed to a homogeneous function of degree 1 using the mono-
tonically non-decresing transformation k

√
f(x). This allows us to conserve all properties of the utility function, more

specifically the preference relations between goods by the increasing transformations theorem.
First, note that since the utilities are concave and the logarithm function is a concave function the objective

function is also concave. Furthermore, as the constraints are all affine, the program we propose is feasible and
bounded. We then write down the the Lagrangian L for this convex program, using slack variables ∀j ∈ [m], pj ≥ 0

and ∀j ∈ [m], i ∈ [n], λij :

L(X,p,λ) =
n∑
i=1

−bi log(ui (xi)) +
m∑
j=1

pj

(
n∑
i=1

xij − 1

)
+

m∑
j=1

n∑
i=1

λij (−xij) (55)

Any optimal solution of a convex program is guaranteed to satisfy a series of conditions called the Karush–Kuhn–Tucker
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(KKT) conditions.3 From the complementary slackness condition, we have the following two conditions:

pj

∑
i∈[n]

xij − 1

 = 0 (56)

λijxij = 0 (57)

From condition (56), we can also deduce the slack variable pj corresponds to the equilibrium prices for the fisher
market since this condition can be interpreted exactly as market clearance since it implies the following:

∀j ∈ [m], If pj > 0, then
∑
i∈[n]

xij = 1 (58)

∀j ∈ [m], If
∑
i∈[n]

xij < 1 then pj = 0 (59)

That is, the above conditions state that if the price of a good is positive then its supply must be equal to its demand
and if a good is not entirely demanded then it is priced at zero.

Second, we will manipulate (60) to prove that consumers do not spend more than their budget. From first order
KKT optimality conditions (i.e., the stationarity conditions), we get:

∇L =
−bi
ui(xi)

∂ui
∂xij

+ pj − λij = 0 (60)

pj =
bi

ui(xi)

∂ui
∂xij

+ λij (61)

Multiplying both sides by xij gives us:

pjxij =
bixij
ui(xi)

∂ui
∂xij

+ λijxij (62)

Using (57), we replace λijxij by 0:

pjxij =
bixij
ui(xi)

∂ui
∂xij

(63)

Summing up both sides across all goods, we obtain:

m∑
j=1

pjxij = bi

m∑
j=1

xij
ui(xi)

∂ui
∂xij

(64)

Before completing the proof, we need to prove one more theorem.

3More background on this can be found here
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Theorem 4.2. Euler’s Theorem
Let f : Rn

+ → R be a homogeneous function of degree k that is continuous and differentiable on Rn
>0, then the

following holds:

n∑
i=1

∂

∂xi
f(x)xi = kf(x) (65)

Proof: Assume that f is a homogeneous function of degree k. Let x ∈ Rn
>0. Define g : (0,∞)→ R such that:

g(λ) = f(λx)− λkf(x) (66)

Due to f being homogeneous, this function has a value of 0 for its entire domain. This implies that its derivative is
also 0 for its domain:

g′(λ) = 0 (67)

Using the chain rule, we also know that the derivative of g can also be calculated as:

g′(λ) =
n∑
i=1

∂

∂xi
f(x)xi − kf(x) (68)

Using (67) and setting λ = 0, we then get:

n∑
i=1

∂

∂xi
f(x)xi = kf(x) (69)

Going back to the proof of theorem 4.1, we have:

m∑
j=1

pjxij = bi

m∑
j=1

xij
ui(xi)

∂ui
∂xij

(70)

m∑
j=1

pjxij =
bi

ui(xi)

m∑
j=1

∂

∂xij
ui(xi)xij (71)

(72)

Using Euler’s theorem with k = 1 (since by our assumption the utility functions are homogeneous of degree 1)
we get:
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m∑
j=1

pjxij =
bi

ui(xi)

m∑
j=1

∂

∂xij
ui(xi)xij (73)

m∑
j=1

pjxij =
bi

ui(xi)
ui(xi) (74)

m∑
j=1

pjxij = bi (75)

Notice that the left hand side of this expression is exactly the spending of any buyer. This result implies that con-
sumers are not spending more than their budget.

We will now show that the optimal allocation given by this program is utility maximizing. Recall from the
stationarity condition (60) that we have:

∀i ∈ [n], j ∈ [m], pj =
bi

ui(xi)

∂ui
∂xij

− λij (76)

∀i ∈ [n], j ∈ [m], pj ≥
bi

ui(xi)

∂ui
∂xij

(77)

∀i ∈ [n], j ∈ [m],
ui(xi)

bi
≥

∂ui
∂xij

pj
(78)

The last inequality implies utility maximization as it means that the utility per buck of the bundle possessed by the
buyer is greater than the utility per buck of any other item in the market. That is, if a buyer spent money on any good
other than the current bundle he currently possesses he would get less utility since the utility per buck of every other
good not in his current bundle will be less.

One thing to note is that while quasi-linear utilities are concave and continuous, we cannot use the above convex
program to find an equilibrium outcome for the quasi-linear case of the Fisher Market. This is because quasi-linear
utilities are not homogeneous and are parametrized by prices which then cause the primal of the above program to
no more be convex. More recent work has shown that another convex program, namely Shmyrev’s convex program
can be used to calculate the equilibrium outcome for a fisher market with quasi-linear utilities. For the program we
are going to propose we consider quasi-utility functions for which goods are perfect substitutes (as opposed to the
combinatorial auction setting where the goods might have been interrelated and the value of a buyer for a bundle
could not be determined by the value of the goods making up a bundle), that is:

∀i ∈ [n], ui =
∑
j∈[m]

xij (vij − pj) (79)
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Theorem 4.3. The primal of the following program called Schmyrev’s program captures the equilibrium allocations
while the dual captures the equilibrium prices of a Fisher Market with quasilinear utilities[1]:

Primal

max
X,u,v

n∑
i=1

bi log(ui)− vi (80)

∀i ∈ [n], ui ≤
∑
j∈[m]

vijxij + vi (81)

∀i ∈ [n],
∑
j∈[m]

xij ≤ 1 (82)

∀i ∈ [n], j ∈ [m] xij, vi ≥ 0 (83)

Dual

min
p,β

m∑
j=1

pj −
n∑
i=1

bi log(βi) (84)

∀i ∈ [n], j ∈ [m] pj ≥ vijβi (85)

∀i ∈ [n], βi ≤ 1 (86)

Theorem 4.4. First Welfare Theorem - Fisher Market
If (X∗,p∗) is a Walrasian equilibrium then it is also pareto-optimal.

Proof:
Let (X∗,p∗) be a Walrasian equilibrium. By way of contradiction, assume that there exists another outcome (X,p)

for which we have ∀i ∈ [n], ui(xi) ≥ ui(x
∗
i ) and ∃i ∈ [n], ui(xi) > ui(x

∗
i ). Since utility functions are non-

satiated and Walrasian equilibria are utility maximizing, then we must have that ∀i ∈ [n], p · xi ≥ p · x∗i and
∃i ∈ [n], p · xi > p · x∗i . That is in order to achieve a higher utility with another allocation that is not a Walrasian
equilibrium, buyers need to be on an indifference curve that intersects with a budget constraint curve further way
from the origin. Since at a Walrasian equilibrium buyers already were spending their entire budget, any outcome that
pareto-dominates the Walrasian Equilibrium outcome (X∗,p∗) must be infeasible.

Theorem 4.5. Second Welfare Theorem - Fisher Market
Let (u, b) be a Fisher Market, if X∗ is pareto-optimal allocation for (u, b) then there exists a price vector p∗ such
that (X∗,p∗) is a Walrasian equilibrium. That is, any Pareto-optimal outcome can be represented as Walrasian
outcome.

Skipping proof as it is relatively involved.
Note that the second welfare theorem does not say that for any Fisher market, every Pareto optimal allocation

is a Walrasian equilibrium. Rather, it says that for any Pareto optimal allocation of a Fisher Market there is a way to
re-distribute resources through prices that makes the allocation a Walrasian equilibrium outcome.
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5 Summary

In this section, we summarize some commonalities and differences of programs for computing Walrasian Equi-
libria in the indivisible and divisible setting.

First, we note that in all the programs we have studied, the primal aims to maximize a certain welfare function.
While in the combinatorial auction setting (indivisble + no budgets) this welfare objective is utilitarian welfare, in
the Fisher Market setting (divisible + budgets), the welfare objective is Nash Social Welfare.

Second, prices always correspond to the dual variable corresponding to the market clearance condition in the
primal.

Third, while in the divisible setting we are guaranteed the existence of Walrasian equilbria and we can always
compute them through convex programming, in the indivisible setting, we are guaranteed an integer solution through
linear programming iff a Walrasian equilbrium exists (which we are not guaranteed that it exists).

Finally, in the indivisible setting Walrasian equilbria are more powerful, namely they are not only pareto-optimal
but also welfare maximizing. In the divisible setting Walrasian equilbria are only pareto-optimal. As a result, in
the indivisible setting we maximize utilitarian welfare in the primal to get equilibrium allocations since Walrasian
equilbiria are welfare-maximizing and in the inidivisble setting maximizing welfare guarantees utility maximization.
In the divisible setting, we instead maximize nash social welfare which allows utility maximization and combined
with the market clearance condition gives us pareto-optimal allocations.
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