
Online Learning and Online Convex Optimization
August 9, 2021

Sadie Zhao, Denizalp Goktas, Amy Greenwald

In this set of notes, we provide a modern overview of online learning. We will give readers a sense of some of interest-
ing ideas in online learning and underscore the centrality of convexity in deriving efficient online learning algorithms.

Contents

1 Introduction 3
1.1 Examples . 3
1.2 A Gentle Start . 4

1.2.1 Realizability Assumption . 4
1.2.2 Randomization . 5

1.3 Notation and Basic Definitions . 6

2 Online Convex Optimization 7
2.1 Convexification . 7

2.1.1 Convexification by Randomization . 8
2.1.2 Convexification by Surrogate Loss function . 8

2.2 Follow-the-leader . 9
2.3 Follow-the-Regularized-Leader . 12

2.3.1 The Doubling Trick . 14
2.4 Online Gradient Descent: Linearization of Convex Functions . 15
2.5 Strong Convex Regularizers . 18

2.5.1 Strong Convexity . 18
2.5.2 Analyzing FoReL with Strongly Convex Regularizers . 20
2.5.3 Derived Bounds . 21

2.6 Online Mirror Descent . 23
2.6.1 Derived Algorithms . 25

2.7 The Language of Duality . 29
2.7.1 Fenchel Conjugacy . 29
2.7.2 Bregman Divergences and the Strong/Smooth Duality . 30
2.7.3 Analyzing OMD using Duality . 31
2.7.4 Other Proof Technique . 32

2.8 Bounds with Local Norms . 33
2.9 Online Convex Optimization Algorithms Summary . 35

1

In this set of notes, we provide a modern overview of online learning. We will give readers a sense of some
of interesting ideas in online learning and underscore the centrality of convexity in deriving efficient online learning
algorithms.

2

1 Introduction

Online learning is the process of answering a sequence of questions given (maybe partial) knowledge of the
correct answers to previous questions and possibly additional available information.

Algorithm 1 Online Learning
1: for t=1,2,... do
2: receive question xt ∈ X
3: predict pt ∈ D
4: receive true answer yt ∈ Y
5: suffer loss l(pt, yt)
6: end for

The learner’s ultimate goal is to minimize the cumulative loss suffered along its run.
Note that we make no assumptions regarding the origin of the sequence of examples. Thus, the sequence can

be deterministic, stochastic, or even adversarially adaptive to the learner’s own behavior. An adversary can make the
cumulative loss arbitrarily large, so we need to restrict the problem. We consider two natural restrictions:

1. We assume that all the answers are generated by some target best mapping, h∗ : X → Y . Furthermore, h∗ is
taken from a fixed set, called a hypothesis class and denoted by H. For an online learning algorithm, A, we
denote by MA(H) the maximal number of mistakes A might make on a sequence of examples which is labeled
by some h∗ ∈ H. A bound on MA(H) is called a mistake-bound and we will try to minimize MA(H).

2. We no longer assume that all answers are generated by some h ∈ H. We define the regret of the algorithm
relative to h when running on a sequence of T examples as:

RegretT (h) =
T∑
t=1

l(pt, yt)−
T∑
t=1

l(h(xt), yt) (1)

and the regret of the algorithm relative to a hypothesis classH is

RegretT (H) = max
h∈H

RegretT (h) (2)

Now, the learner’s new goal is to minimize regret relative to H. We will sometimes be satisfied with “low
regret” algorithms, by which we mean that RegretT (H) grows sub-linearly.

1.1 Examples

In this section, we will list some online prediction problems and their possible hypothesis classes.

Online Regression.
In regression problem, X = Rd which corresponds to a set of d features, and Y = D = R. Common loss functions
are the squared loss, l(p, y) = (p − y)2, and the absolute loss, l(p, y) = |p − y|. The simplest hypothesis class for
regression is the class of linear predictors, H = {x 7→

∑d
i=1w[i]x[i] : ∀i, w[i] ∈ R}. This is the hypothesis class for

online linear regression problem.

3

Prediction with Expert Advice
On each round t, the learner has to choose from the advice of d given expert. Therefore, xt ∈ X ⊂ Rd, where xt[i]
is the advice of the ith expert, and pt ∈ D = {1, 2, ..., d}. The true answer is a vector yt ∈ Y = [0, 1]d, where yt[i]
is the cost of following the advice of ith expert. Thus, l(pt, yt) = yt[pt]. A common hypothesis class is the set of
constant predictors,H = {h1, ..., hd}, where hi(x) = i for all x ∈ X .

1.2 A Gentle Start

In this section, we will start with discussing online classification problem. In this problem, Y = D = {0, 1},
and l(p, y) = |p− y|. Moreover, we assume that we have a finite hypothesis class, that is, |H| <∞.
Recall that the regret relative to the hypothesis class is defined as

RegretT (H) = max
h∈H

(
T∑
t=1

|pt − yt| −
T∑
t=1

|h(xt)− yt|

)
(3)

as l(p, y) = |p− y| in this case.
We have Cover’s impossibility results: no algorithm can obtain a sublinear regret bound even if |H| = 2. We can
sidestep this result by further restricting the power of the adversarial environment as we described above.

1.2.1 Realizability Assumption

We make one additional assumption: assume that all target labels are generated by some perfect h∗ ∈ H, namely,
yt = h∗(xt) ∀1 ≤ t ≤ T . Our goal is to minimize the mistake bound, MA(H).

Our intuition is to design an algorithm that at any round, use any hypothesis which is consistent with all past
examples.

Algorithm 2 Consistent(Online Classification)
input: A finite hypothesis classH
Initialize: V1 = H
for t=1,2,... do

receive xt

choose any h ∈ Vt
predict pt = h(xt)

receive true answer yt = h∗(xt)

Update Vt+1 = {h ∈ Vt : h(xt) = y(t)}
end for

4

Obviously, whenever Consistent makes a prediction mistake, at least one hypothesis is removed from Vt.
Therefore, after making M mistakes we have |Vt| ≤ |H| −M . Since by the realizability assumption, h∗ ∈ H (so Vt
is always nonempty), we have 1 ≤ |Vt| ≤ |H| −M . That is,

Theorem 1.1. LetH be a finite hypothesis class. The Consistent algorithm enjoys the mistake bound

MConsistent(H) ≤ |H| − 1

Then, we present a better algorithm which is guaranteed to make exponentially fewer mistakes. The idea is to
predict according to the majority of hypothesis in Vt rather than according to some arbitrary h ∈ Vt.

Algorithm 3 Halving(Online Classification)
input: A finite hypothesis classH
Initialize: V1 = H
for t=1,2,... do

receive xt

predict pt = argmaxr∈{0,1} |{h ∈ Vt : h(xt) = r}| (in case of a tie, predict pt = 1)
receive true answer yt
Update Vt+1 = {h ∈ Vt : h(xt) = y(t)}

end for

In this way, whenever we make mistake, we are guaranteed to remove at least half of the hypotheses from the version
space Vt. That is, whenever the algorithm errs, we have |Vt+1| ≤ |Vt|/2. Therefore, if M is the total number of
mistakes, we have

1 ≤ |Vt+1| ≤ |H|2−M .

Rearranging the above inequality, we can conclude that:

Theorem 1.2. LetH be a finite hypothesis class. The Halving algorithm enjoys the mistake bound

MHalving(H) ≤ log2(|H|)

1.2.2 Randomization

Instead of having the predictions domain being D = {0, 1}, we allow it to be D = [0, 1], and interpret pt ∈ D
as the probability to predict the label 1 on round t. The loss function is still l(pt, yt) = |pt − yt|.

With this assumption, it is possible to derive a low regret algorithm as stated in the following theorem.

Theorem 1.3. Let H be a finite hypothesis class. There exists an algorithm for online classification, whose
predictions come from D = [0, 1], and enjoys the regret bound

T∑
t=1

|pt − yt| −min
h∈H

T∑
t=1

|h(xt)− yt| ≤
√

0.5 ln(|H|)T

We will provide a constructive proof of this theorem in the next section.

5

1.3 Notation and Basic Definitions

We denote scalars with lower case letters (e.g., x), and vectors with bold ace letters (e.g., x). x[i] denotes the
ith element of vector x. Since online learning is performed in a sequence of rounds, we denote by xt the tth vector
in a sequence of vectors x1,x2,...,xT .

The inner product between vectors x and w is denoted by 〈x,w〉.Whenever we do not specify the vector
space, we assume that it is the d-dimensional Euclidean space and then 〈x,w〉 =

∑d
i=1 x[i]w[i]. The Euclidean (or

`2) norm of a vector w is ‖w‖2 =
√
〈w,w〉. We also use other `p norms, ‖w‖p = (

∑
i |w[i]|p)1/p. In particular,

‖w‖1 =
∑

i |w[i]| and ‖w‖∞ = maxi |w[i]|. A generic norm of a vector w is denoted by ‖w‖ and its dual norm is
defined as

‖x‖∗ = max{〈w,x〉 : ‖w‖ ≤ 1}.

The definition of the dual norm immediately implies the inequality

〈w, z〉 ≤ ‖w‖ ‖z‖∗ . (4)

Given a predicate π, we use the notation 1[π]to denote the indicator function that outputs 1 if π holds and 0 if
otherwise.

A function f is called L-Lipschitz over a set S with respect to a norm ‖·‖ if for all u,w ∈ S, we have

|f(u)− f(w)| ≤ L ‖u−w‖ .

The gradient of a differentiable function f is denoted by∇f and the Hessian is denoted by∇2f .
A set S is convex if for all w,v ∈ S and α ∈ [0, 1], we have that αw + (1 − α)v ∈ S as well. Similarly, a

function f : S → R is convex if for all w,v and α ∈ [0, 1], we have f(αw + (1− α)v) ≤ αf(w) + (1− α)f(v).

6

2 Online Convex Optimization

Algorithm 4 Online Convex Optimization (OCO)
1: input: A convex set S
2: for t=1,2,... do
3: predict a vector wt ∈ S
4: receive a convex loss function ft : S → R
5: suffer loss ft(wt)

6: end for

In this section, we describe algorithms for online convex optimization and analyze their regret. Recall that the
regret of an online algorithm with respect a computing hypothesis (which here will be come vector u) is defined as

RegretT (u) =
T∑
t=1

ft(wt)−
T∑
t=1

ft(u)

Then, the regret of the algorithm relative to a set of competing vectors, U , is defined as

RegretT (U) = max
u∈U

RegretT (u)

Remark 2.1. Note that the predictions of the learner should come from the set S, while we analyze the regret respect
to the set U . While in some situations it makes sense to set U = S, this is not always true. If we do not specify the
value of U , we use the default value U = S, and our default setting for S is S = Rd.

2.1 Convexification

Some online prediction problems can be seamlessly cast in the online convex optimization framework.

Example 2.2 (Online linear regression). Recall the online regression problem described in Section 1.1. On each
online round, the learner first receives a vector of features, xt ∈ A ⊂ Rd, and then predict a scalar, pt. Next, the
learner receive the true answer yt ∈ R, and suffer the loss l(pt, yt) = |pt − yt|. The learner should be competitive
with the set of linear predictors of the from x 7→ 〈w,x〉. Assume that the predictions of the learner are also based on
linear functions, then we can easily cast this online prediction problem in the online convex optimization framework
as follows:

The learner should decide on a vector wt which yields the prediction pt = 〈wt,xt〉. The loss function becomes
|pt − yt| = |〈wt,xt〉 − yt|. Therefore, consider ft(w) = |〈w,xt〉 − yt|, which is indeed a convex function, we obtain
that ft(wt) = l(pt, yt).

Note that other online prediction problems do not seem to fit into the online convex optimization framework.
For example, in the online classification problem, the predictions domain S or the loss functions are not convex. We
will then describe two techniques that allow us to utilize the online convex optimization framework in additional
scenarios.

7

2.1.1 Convexification by Randomization

Consider the problem of prediction with expert advice, where on each online round, the learner has to choose
from the advice of d given experts. Denote by pt ∈ {1, ..., d} the chosen expert. Then, the learner receives a vector
yt ∈ [0, 1]d, where yt[i] is the cost of following the advice of the ith expert. Finally, the learner suffers the loss
l(pt) = yt[pt].

By allowing the learner to randomize his predictions, we can cast the problem in the online convex optimization
framework, and therefore can obtain low regret algorithm for this problem

Formally, let S = {w ∈ Rd
+ : ‖w‖1 = 1} be the probability simplex, which forms a convex set. At round t,

the learner chooses wt ∈ S and based on wt picks an expert at random according to P[Pt = i] = wt[i] where Pt a
random categorical variable, i.e., Pt ∼ Cat(d,wt). Then, the cost vector yt is revealed and the learner pays for his
expected cost

E[l(Pt))] = E[yt[Pt])] =
d∑
i=1

P[pt = i]yt[i] = 〈wt,yt〉

Now we can cast the problem as online convex optimization since S is a convex set and the loss function
ft(w) = 〈w,yt〉 is a linear function (hence convex).

2.1.2 Convexification by Surrogate Loss function

We again start with the specific problem of online classification with a finite hypothesis class. Recall the real-
izability assumption we used to sideup Cover’s impossibility result. That is, we assumed that there exists a perfect
h∗ ∈ H such that yt = h∗(xt) for all t. With this assumption, we described the Halving algorithm with at most
log2(|H|) prediction mistakes.

We now try derive a similar guarantee using the language of online convex optimization. Let H = {h1, ..., hd}
and let S = {w ∈ Rd

+ : ||w||1 = 1} be the probability simplex. For each online round, define vt = (h1(xt), ..., hd(xt)) ∈
{0, 1}d. Our algorithm will maintain wt ∈ S and will predict the label according to

pt =

1 if 〈wt,vt〉 ≥ 1/2

0 if 〈wt,vt〉 < 1/2

LetM = {t : pt 6= yt} be the rounds on which our algorithm makes a prediction mistake. We define the loss function

ft(w) =

2|〈wt,vt〉 − yt| if t ∈M

0 if t 6∈ M

ft has two key properties:

• ft is a convex function
• ft(wt) ≥ |pt−yt|, namely, the convex loss upper bounds the original non-convex loss. (Note that when t ∈M,
ft(w) ≥ 1.)

Hence, we name it surrogate convex loss. Since S is a convex set and ft is a convex function for all t, we have
obtained an online convex optimization problem.

8

In the next section, we will derive algorithms for online convex optimization problems. In particular, one of
these algorithms enjoys the regret bound

∀u ∈ S,
T∑
t=1

ft(wt) ≤
T∑
t=1

ft(u) +
log(d)

η
+ 2η

T∑
t=1

Lt

where η is a parameter, which we will set here to be η = 1/4, and Lt is a Lipschitz parameter of the function ft. In
our case, Lt = 1 (consider ft function for both pt = 0 and pt = 1), if t ∈M and Lt = 0 if t 6∈ M. Hence,

∀u ∈ S,
T∑
t=1

ft(wt) ≤
T∑
t=1

ft(u) + 4 log(d) +
1

2
|M|

By the surrogate property of ft, we can lower bound the left hand side by |M|. Rearranging, we obtain:

|M| ≤ 2
T∑
t=1

ft(u) + 8 log(d)

(For all t ∈M, ft(wt) ≥ 1, so
∑T

t=1 ft(wt) ≥ |M|.)
This type of bound, where the number of mistakes is upper bounded by the convex surrogate loss of a competing

hypothesis, is often called a relative loss bound.
In the realizable case, there exists a true (perfect) hypothesis h∗. Then, consider the vector u = (0, ..., 0, 1, 0, ..., 0) ∈

S, where the 1 is placed in the coordinate corresponding to the true hypothesis h∗. Then, by our construction,
ft(u) = 0 for all t, which yields

|M| ≤ 8 log(d)

Remark 2.3. Here is a general process of this surrogate loss function technique:

1. Reparameterize of the problem such that the decision space becomes convex (instead of maintaining the set Vt
in Halving, we now maintain the vector wt ∈ S).

2. Construct a function ft of the predicted parameter that satisfied two requirements: it is convex and it should
upper bound the original loss function.

3. Construct a convex surrogate for which there exists some u ∈ S that attains a low cumulative loss. Otherwise,
the resulting bound will be meaningless. Typically, this is done by assuming more on the problem. For example,
in the above the realizability assumption enable us to construct a surrogate for which there was u ∈ S such
that ft(u) = 0 for all t.

2.2 Follow-the-leader

In this section, we try to derive some algorithms for online convex optimization.
The most natural learning rule is, at any online round, using the vector which has minimal loss on all past

rounds. This is the same spirit of the Consistent algorithm, and in the context of online convex optimization, it
is usually referred to as Follow-The-Leader.

9

Algorithm 5 Follow-the-leader (FTL)
1: input: A convex set S
2: for t=1,2,... do
3:

wt ∈ argmin
w∈S

t−1∑
i=1

fi(w)

4: end for

To analyze FTL, we will first show that the regret of FTL is upper bounded by the cumulative difference between
the loss of wt and wt+1.

Lemma 2.4. Let w1, w2,... be the sequence of vectors produced by FLT. Then, for all u ∈ S, we have

RegretT (u) =
T∑
t=1

(ft(wt)− ft(u)) ≤
T∑
t=1

(ft(wt)− ft(wt+1))

Proof. Subtracting
∑

t ft(wt) from both sides and rearranging, the desired inequality can be rewritten as

T∑
t=1

ft(wt+1) ≤
T∑
t=1

ft(u) ∀u ∈ S.

We want to prove this inequality by induction. The base case is T = 1 follows directly from the definition of wt+1.
Assume the inequality holds for T − 1, then for all u ∈ S we have

T−1∑
t=1

ft(wt+1) ≤
T−1∑
t=1

ft(u).

Adding fT (wT+1) to both sides, we get

T∑
t=1

ft(wt+1) ≤ fT (wT+1) +
T−1∑
t=1

ft(u).

Since this holds for all u ∈ S, we can pick u = wT+1. Thus,

T∑
t=1

ft(wt+1) ≤
T∑
t=1

ft(wT+1).

By definition of wT+1 ∈ argminw∈S
∑T

t=1 ft(w), we know that for all u ∈ S,

T∑
t=1

ft(wT+1) ≤
T∑
t=1

ft(u).

Therefore,
T∑
t=1

ft(wt+1) ≤
T∑
t=1

ft(u) ∀u ∈ S

10

Definition 2.5 (Online Quadratic Optimization). This is an online convex optimization problem where at each
round ft(w) = 1

2
‖w − zt‖22 for some vector zt.

Next, we can use lemma 2.4 to derive a regret bound for the following sub-family of online convex optimization.

Corollary 2.6. Consider running FTL on an Online Quadratic Optimization problem with S = Rd and let
L = maxt ‖zt‖2. Then, the regret of FTL with respect to all vectors u ∈ Rd is at most 4L2(log(T) + 1).

Proof. We further assume that S = Rd. For this case, we can verify that the FTL becomes

wt ∈ argmin
w∈S

t−1∑
i=1

fi(w) = argmin
w∈S

t−1∑
i=1

1

2
‖w − zi‖22 =

1

t− 1

t−1∑
i=1

zi,

namely, wt is the average of z1, · · · , zt−1.
(wt ∈ argminw∈S

∑t−1
i=1

1
2
‖w − zi‖22 implies

∑t−1
i=1 wt − zi = 0 by taking derivative, so (t − 1)wt =

∑t−1
i=1 zi, and

finally wt =
1
t−1
∑t−1

i=1 zi.)
Thus,

wt+1 =

(
t− 1

t

)
wt +

(
1

t

)
zt =

(
1− 1

t

)
wt +

(
1

t

)
zt

which yields

wt+1 − zt =

(
1− 1

t

)
wt +

(
1

t
− 1

)
zt =

(
1− 1

t

)
(wt − zt) .

Therefore,

ft(wt)− ft(wt+1) =
1

2
‖wt − zt‖2 −

1

2
‖wt+1 − zt‖2

=
1

2
‖wt − zt‖2 −

1

2

∥∥∥∥(1− 1

t

)
(wt − zt)

∥∥∥∥2
=

1

2

(
1−

(
1− 1

t

)2
)
‖wt − zt‖2

=
1

2

(
2

t
− 1

t2

)
‖wt − zt‖2

=
1

t

(
1− 1

2t

)
‖wt − zt‖2

≤ 1

t
‖wt − zt‖2 .

Let L = maxt ‖zt‖. Since wt is the average of z1, · · · , zt−1, we have that ‖wt‖ ≤ L and therefore by triangle
inequality, ‖wt − zt‖ ≤ 2L. We have therefore obtained:

T∑
t=1

(ft(wt)− ft(wt+1)) ≤ (2L)2
T∑
t=1

1

t
.

Combining the above with lemma 2.4 and using the inequality
∑T

t=1
1
t
≤ log(T) + 1 we can conclude that the regret

of FTL with respect to all vectors u ∈ Rd is at most 4L2(log(T) + 1).

11

Definition 2.7 (Online Linear Optimization). This is an online convex optimization problem where at each round
ft(w) = 〈w, zt〉 for some vector zt.

While the above results about Online Quadratic Optimization problem seems promising, we will next show that
the FTL rule does not guarantee low regret for another important sub-family.

Example 2.8 (Failure of FTL). Let S = [−1, 1] ⊂ R and consider the sequence of linear functions such that
ft(w) = ztw where

zt =


−0.5 if t = 1

1 if t is even

−1 if t > 1 and t is odd

Then, if t is odd,

wt ∈ argmin
w∈S

t−1∑
i=1

fi(w) = argmin
w∈S

t−1∑
i=1

ziw = argmin
w∈S

0.5w = −1,

Similarly, if t is even,

wt ∈ argmin
w∈S

t−1∑
i=1

fi(w) = argmin
w∈S

t−1∑
i=1

ziw = argmin
w∈S

−0.5w = 1.

The cumulative loss of the FTL algorithm will therefore be
∑T

t=1 ft(wt) =
∑T

t=1 ztwt = T . Moreover, the cumulative
loss of the fixed solution u = 0 ∈ S = 0 (let U = S here), so RegretT (u) = T . Thus, the regret of FTL is at least T.

Intuitively, FTL fails in the Example 2.8 because its predictions are not stable–wt shifts drastically from round
to round. In contrast, FTL works fine for the quadratic game since wt+1 is “close” to wt. One way to stabilize FTL
is by adding regularization, which is the topic of next section.

2.3 Follow-the-Regularized-Leader

Follow-the-Regularized-Leader is a natural modification of the basic FTL algorithm in which we minimize the
loss on all past rounds plus a regularization term. The goal of the regularization term is to stabilize the solution.
Formally, for a regularization function R : S → R we define

Algorithm 6 Follow-the-Regularized-leader(FoReL)
1: input: A convex set S
2: for t=1,2,... do
3:

wt ∈ argmin
w∈S

(
t−1∑
i=1

fi(w) +R(w)

)
4: end for

Naturally, different regularization functions will yield different algorithms with different regret bounds. But,
first, let us specify FoReL for the case of linear functions and squared-`2-norm regularization, which we often call
the Euclidean regularization case.

12

Example 2.9. Consider again the Online linear Optimization problem where ft(w) = 〈w, zt〉 and let S = Rd.
Suppose we run FoReL with the regularization function R(w) = 1

2η
‖w‖22 for some positive scalar η. Then, it is easy

to verify that

wt+1 = −η
t∑
i=1

zi = wt − ηzt (5)

Proof.

wt = argmin
w∈S

t−1∑
i=1

fi(w) +R(w)

= argmin
w∈S

t−1∑
i=1

〈w, zi〉+
1

2η
‖w‖22 ,which implies

t−1∑
i=1

zi +
1

η
wt = 0,

so wt = −η
t−1∑
i=1

zi,wt+1 = −η
t∑
i=1

zi = wt − ηzt

Note that zt is the gradient of ft at wt (in fact, at any point). Therefore, the recursive rule, wt+1 = wt − ηzt
can be rewritten as wt+1 = wt − η∇ft(wt). Hence, this rule is often called the Online Gradient Descent.

Then, we turn to analysis of FoReL. As with the analysis of FTL, we first relate the regret of FoReL with the
cumulative difference between the loss of wt and wt+1.

Lemma 2.10. Let w1,w2,... be the sequence of vectors produced by FoReL. Then, for all u ∈ S we have

T∑
t=1

(ft(wt)− ft(u)) ≤ R(u)−R(w1) +
T∑
t=1

(ft(wt)− ft(wt+1)).

Proof. Observing that running FoReL on f1, ..., fT is equivalent to running FTL on f0, f1, ..., fT where f0 = R.
Using Lemma 2.4, we obtain that

T∑
t=0

(ft(wt)− ft(u)) ≤
T∑
t=0

(ft(wt)− ft(wt+1)).

That is,
T∑
t=1

(ft(wt)− ft(u)) +R(w0)−R(u) ≤
T∑
t=1

(ft(wt)− ft(wt+1)) +R(w0)−R(w1).

Therefore, by rearranging this, we can conclude that

T∑
t=1

(ft(wt)− ft(u)) ≤ R(u)−R(w1) +
T∑
t=1

(ft(wt)− ft(wt+1)).

Based on the above lemma, we can easily derive a regret bound for online linear optimization with the regularizer
R(w) = 1

2η
‖w‖22.

13

Theorem 2.11. Consider running FoReL on a sequence of linear functions, ft(w) = 〈w, zt〉 for all t, with
S = R, and with the regularizer R(w) = 1

2η
‖w‖22, which yields the predictions given in Equation (5). Then, for

all u we have

RegretT (u) ≤
1

2η
‖u‖22 + η

T∑
t=1

‖zt‖22 .

In particular, consider the set U = {u : ‖u‖ ≤ B} and let L be such that 1
T

∑T
t=1 ‖zt‖

2
2 ≤ L2, then by setting

η = B
L
√
2T

we obtain

RegretT (u) ≤ BL
√
2T .

Proof. Using Lemma 2.10 and Equation (5),

RegretT (u) ≤ R(u)−R(w1) +
T∑
t=1

(ft(wt)− ft(wt+1)) by lemma 2.10

=
1

2η
‖u‖22 +

T∑
t=1

〈wt −wt+1, zt〉 Note that w1 = 0

=
1

2η
‖u‖22 +

T∑
t=1

〈ηzt, zt〉 as wt+1 = wt − ηzt by Equation (5)

=
1

2η
‖u‖22 + η

T∑
t=1

‖zt‖22

Remark 2.12. The parameter η in the above theorem depends on the time horizon T . It is possible to derive a similar
result without using the time horizon. In the next section, we show a generic way to do so.

We see that the Euclidean regularization function guarantees low regret for linear functions with bounded gra-
dient using the `2-norm, because it stabilizes the predictions. We shall later generalize the above results in two
aspects:

• First, we allow any sequence of Lipschitz functions rather than linear functions with bounded gradient.

• Second, we consider other regularization functions which guarantee stability in other scenarios.

2.3.1 The Doubling Trick

Sadie: add own explanation
Consider an algorithm that enjoys a regret bound of the form α

√
T , but the parameters require the knowledge of T .

The doubling trick, described below, enables us to convert such an algorithm into an algorithm that does not need to
know the time horizon. The idea is to divide the time into periods of increasing size and run the original algorithm
on each period. The regret of A on each period of 2m rounds is at most α

√
2m. Therefore, the total regret is at most

14

Algorithm 7 The Doubling Trick
1: input: algorithm A whose parameters depend on the time horizon T
2: for m = 0, 1, 2, . . . do
3: run A on the 2m rounds: t = 2m, ..., 2m+1 − 1

4: end for

dlog2(T)e∑
m=1

α
√
2m = α

dlog2(T)e∑
m=1

(√
2
)m

= α

(
1− (

√
2)dlog2(T)e+1

1−
√
2

)

≤ α

(
1−
√
2T

1−
√
2

)

≤
√
2√

2− 1

(
α
√
T
)

That is, we obtain that the regret is worse by a constant multiplicative factor.

2.4 Online Gradient Descent: Linearization of Convex Functions

In the previous section we introduced the FoReL approach and analyzed it for the case of linear functions,
S = Rd, and Euclidean regularization. We now generalize this results by deriving a simple reduction from convex
functions to linear function.

Definition 2.13. Let S be a convex set. A function f : S → R is convex iff for all w ∈ S, there exists z such that

∀u ∈ S, f(u) ≥ f(w) + 〈u−w, z〉. (6)

In words, convexity is characterized by the existence of tangents z that lie below the function.

Definition 2.14 (sub-gradient). A vector z that satisfies eq. (6) is called a sub-gradient of f at w. The set of
sub-gradients of f at w is denoted ∂f(w). Furthermore, if f is differentiable at w then ∂f(w) contains single
element – the gradient of f at w, ∇f(w).

Getting back to online convex optimization, by definition 2.13, for each round t, there exists zt such that

ft(wt)− ft(u) ≤ 〈wt − u, zt〉

It follows that for any sequence of convex functions f1, ..., fT and vectors w1, ...,wT , if for all t, zt ∈ ∂ft(wt)

(namely, it is a sub-gradient), then

T∑
t=1

(ft(wt)− ft(u)) ≤
T∑
t=1

〈wt − u, zt〉 =
T∑
t=1

(〈wt, zt〉 − 〈u, zt〉) (7)

Combining the above observation with the FoReL procedure with Euclidean regularization (eq. (5)) yields the
Online Gradient Descent algorithm:

15

Figure 1: Left: Illustration of Equation (6). Right: Illustration of several sub-gradients of a non-differentiable convex
function

Algorithm 8 Online Gradient Descent (OGD)
1: parameter: η > 0

2: initialize: w1 = 0

3: for t=2,3,...,T do
4: wt+1 = wt − ηzt where zt ∈ ∂ft(wt)

5: end for

To analyze OGD, we combine Equation (7) with the analysis for linear functions given in theorem 2.11, to get
that

RegretT (u) ≤ R(u)−R(w1) +
T∑
t=1

(ft(wt)− ft(wt+1)) by lemma 2.10

≤ 1

2η
‖u‖22 +

T∑
t=1

〈wt −wt+1, zt〉 by eq. (7)

=
1

2η
‖u‖22 +

T∑
t=1

〈ηzt, zt〉 as wt+1 = wt − ηzt

=
1

2η
‖u‖22 + η

T∑
t=1

‖zt‖22 (8)

This regret bound depends on the norms of the sub-gradients of the vectors produced by the algorithm, and is
therefore not satisfactory. To derive a more concrete bound, we must assure that the norms of sub-gradients will not
be excessively large. One way to do this is by assuming that the functions are Lipschitz.

But before relating norms of sub-gradients to Lipschitzness of ft, we first prove a useful corollary.

Corollary 2.15. (Cauchy-Schwarz inequality for dual norm)
For any vector w, z, 〈w, z〉 ≤ ‖w‖ ‖z‖∗ for some norm ‖·‖ and its dual ‖·‖∗.

Proof. Consider u = w
‖w‖ . We have 〈u, z〉 = 1

‖w‖〈w, z〉. By the definition of dual norm, we have

‖z‖∗ = max
‖v‖≤1

〈v, z〉

16

Since ‖u‖ =
∥∥∥ w
‖w‖

∥∥∥ = 1, 〈u, z〉 ≤ ‖z‖∗. Therefore,

〈w, z〉 = ‖w‖ 〈u, z〉
≤ ‖w‖ ‖z‖∗

Lemma 2.16. Let f : S → R be a convex function. Then, f isL-Lipschitz over S with respect to a norm ‖·‖ iff for
all w ∈ S and z ∈ ∂f(w) we have ‖z‖∗ ≤ L, where ‖z‖∗ is the dual norm (‖z‖∗ = max{〈w, z〉 : ‖w‖ ≤ 1}).

Proof. Assume that f is Lipschitz. Choose some w ∈ S, z ∈ ∂f(w). Let u be such that u−w = argmaxv:‖v‖≤1〈v, z〉,
‖u−w‖ ≤ 1. Thus, 〈u−w, z〉 = ‖z‖∗.

By the convexity of f , and from the definition of sub-gradient,

f(u)− f(w) ≥ 〈u−w, z〉

On the other hand, since f is Lipschitz, we have

L = L · 1 ≥ L ‖u−w‖ ≥ f(u)− f(w)

Combining the above two inequalities, we conclude that ‖z‖∗ ≤ L.
For the other direction, assume that ‖z‖∗ ≤ L. Since f is convex and z ∈ ∂f(w), we also have

f(w)− f(u) ≤ 〈w − u, z〉.

Combining the above with corollary 2.15: 〈w, z〉 ≤ ‖w‖ ‖z‖∗, we obtain

f(w)− f(u) ≤ 〈w − u, z〉 ≤ ‖w − u‖ ‖z‖∗ ≤ L ‖w − u‖ .

Hence, f is L-Lipschitz.

Since the dual of `2 norm is `2 norm, ‖z‖∗ = ‖z‖2 with respect to norm `2. Therefore, in eq. (8), as ft is
Lt-Lipschitz,

T∑
t=1

‖z‖22 =
T∑
t=1

‖z‖2∗ ≤
T∑
t=1

L2
t ,

We conclude:

Corollary 2.17. Assume that OGD is running on a sequence f1, ..., fT of convex functions. Then, for all u, we
have

RegretT (u) ≤
1

2η
‖u‖22 + η

T∑
t=1

‖zt‖22 .

If we further assume that each ft is Lt−Lipschitz with respect to ‖·‖2, and let L be such that 1
T

∑T
t=1 L

2
t ≤ L2.

Then, for all u, the regret of OGD satisfies

RegretT (u) ≤
1

2η
‖u‖22 + ηTL2.

17

In particular, if U = {u : ‖u‖2 ≤ B} and η = B
L
√
2T

then

RegretT (U) ≤ BL
√
2T

Let us discuss some consequences of Corollary 2.16 starting with the online linear regression problem (Example
2.2). Recall that for that example, ft(w) = |〈w,xt〉 − ty|, where xt comes from a set A. If the set A is contained in a
ball of radius of L (with respect to `2 norm), then ft is L−Lipschitz. We therefore obtain a regret bound of BL

√
2T

which holds for all competing vectors u with ‖u‖2 ≤ B.

2.5 Strong Convex Regularizers

So far we applied FoReL with the Euclidean regularization function. However, this regularization cannot be used
for learning with expert advice problem as it does not guarantee that wt will always be in the probability simplex. In
this section, we consider other regularization functions and underscore strong convexity as an important property of
them.

2.5.1 Strong Convexity

Intuitively, a function is strongly convex if it grows faster than a linear function.

Definition 2.18. A function f : S → R is σ-strongly-convex over S with respect to a norm ‖·‖ if for any w ∈ S
we have

∀z ∈ ∂f(w), ∀u ∈ S, f(u) ≥ f(w) + 〈z,u−w〉+ σ

2
‖u−w‖2

Lemma 2.19. Let S be a nonempty convex set. Let f : S → R be a σ-strongly-convex function over S with
respect to a norm ‖·‖. Let w = argminv∈S f(v). Then, for all u ∈ S

f(u)− f(w) ≥ σ

2
‖u−w‖2 .

Proof. If u ≥ w, then z ≥ 0, so 〈z,u−w〉 ≥ 0.
If u < w, then z ≤ 0, so 〈z,u−w〉 ≥ 0.
Sadie: not very sure how to write the proof of these facts rigorously Thus, for all u ∈ S, by strong convexity,

∀z ∈ ∂f(w), ∀u ∈ S, f(u) ≥ f(w) + 〈z,u−w〉 (9)

f(u)− f(w) ≥ 〈z,u−w〉+ σ

2
‖u−w‖2

≥ σ

2
‖u−w‖2

18

Corollary 2.20. If R is twice differentiable, then a sufficient condition for strong convexity of R is that for all
w,x ∈ S, 〈∇2R(w)x,x〉 = xT∇2R(w)x ≥ σ ‖x‖2, where ∇2R(w) is the Hessian matrix of R at w, namely
the matrix of second-order partial derivatives of R at w.

Proof. By Taylor expansion,

∀u ∈ S, R(u) ≥ R(w) + 〈∇R(w),u−w〉+ 1

2
〈∇2R(w)(u−w),u−w〉

∀u ∈ S, R(u) ≥ R(w) + 〈∇R(w),u−w〉+ 1

2
(u−w)T∇2R(w)(u−w)

We also know that R is σ-strongly-convex if

∀z ∈ ∂R(w), ∀u ∈ S, R(u) ≥ R(w) + 〈z,u−w〉+ σ

2
‖u−w‖2

That is, R is σ-strongly-convex if

∀u ∈ S, 1

2
(u−w)T∇2R(w)(u−w) ≥ σ

2
‖u−w‖2

∀w,x ∈ S,xT∇2R(w)x ≥ σ ‖x‖2

Example 2.21 (Euclidean regularization). The function R(w) = 1
2
‖w‖22 is 1-strongly-convex with respect to the `2

norm over Rd. To see this, simply note that the Hessian of R at any w is the identity matrix.

Example 2.22 (Entropic regularization). The functionR(w) =
∑d

i=1w[i] log(w[i]) is 1
B

-strongly-convex with respect
to the `1 norm over the set S = {w ∈ Rd : w > 0 ∧ ‖w‖1 ≤ B}. In particular, R is 1-strongly-convex over the
probability simplex, which is the positive vectors whose elements sum to 1, since B = 1 in that case. To see this, note
that

〈∇2R(w)x,x〉 =
∑
i

x[i]2

w[i]

=
1

‖w‖1

(∑
i

w[i]

)(
x[i]2

w[i]

)
‖w‖1 =

∑
i

w[i]

≥ 1

‖w‖1

(∑
i

√
w[i]

|x[i]|√
w[i]

)2

by Cauchy-Schwartz inequality

=
1

‖w‖1
‖x‖21 (10)

Again, recall that if R is twice differentiable, then a sufficient condition for strong convexity of R is that for all w,x,
〈∇2R(w)x,x〉 ≥ σ ‖x‖2 (Corollary 2.20). In this case, choose σ = 1

B
, we know R is 1

B
-strongly-convex.

Additional useful properties are given in the following lemmas, whose proof follows directly from the definition
of strong convexity.

19

Lemma 2.23. Given θ ∈ R, if R is 1-strongly-convex over S with respect to some norm, then θR is θ-strongly-
convex over S with respect to the same norm. In addition, if S ′ is a convex subset of S, then R is 1-strongly
convex over S ′ as well.

Lemma 2.24. The addition of a convex function to a strongly convex function keeps the strong convexity property.

Proof. Say that f is convex, then by definition, for all w ∈ S, there exists z such that

∀u ∈ S, f(u) ≥ f(w) + 〈u−w, z〉.

We denote the set of such z as ∂f(w).
Say that g is σ-strongly convex with respect to norm ‖·‖, then by definition, for all w ∈ S, we have

∀z ∈ ∂g(w), ∀u ∈ S, g(u) ≥ g(w) + 〈z,u−w〉+ σ

2
‖u−w‖2 .

Then, if h = f + g, we have

∂h(x) = ∂f(x) + ∂g(x) = {a+ b | a ∈ ∂f(x), b ∈ ∂g(x)}

Then, ∀z = z1 + z2 ∈ ∂h(w),, ∀u ∈ S,

f(u) + g(u) ≥ f(w) + 〈z1,u−w〉+ g(w) + 〈z2,u−w〉+ σ

2
‖u−w‖2

h(u) ≥ h(w) + 〈z1 + z2,u−w〉+ σ

2
‖u−w‖2

= h(w) + 〈z,u−w〉+ σ

2
‖u−w‖2

Therefore,
∀z ∈ ∂h(w), ∀u ∈ S, h(u) ≥ h(w) + 〈z,u−w〉+ σ

2
‖u−w‖2 .

2.5.2 Analyzing FoReL with Strongly Convex Regularizers

We now analyze FoReL with strongly convex regularizers. Recall the regret bound given in Lemma 2.10:

T∑
t=1

(ft(wt)− ft(u)) ≤ R(u)−R(w1) +
T∑
t=1

(ft(wt)− ft(wt+1)).

If ft is L-Lipschitz with respect to a norm ‖·‖ then

ft(wt)− ft(wt+1) ≤ L ‖wt −wt+1‖ .

Therefore, we need to ensure that ‖wt −wt+1‖ is small. The following lemma shows that if the regularization
function R(w) is strongly convex with respect to the same norm, then wt will be closed to wt+1.

20

Lemma 2.25. Let R : S → R be a σ-strongly-convex function over S with respect to a norm ‖·‖. Let w1,w2, ...

be the predictions of the FoReL algorithm. Then, for all t, if ft is Lt-Lipschitz with respect to ‖·‖, then

ft(wt)− ft(wt+1) ≤ Lt ‖wt −wt+1‖ ≤
L2
t

σ
.

Proof. For all t, let Ft(w) =
∑t−1

i=1 fi(w)+R(w) and note that the FoReL rule is wt = argminw∈S Ft(w). Note also
that Ft is σ-strongly-convex since the addition of a convex function to a strongly convex function keeps the strong
convexity property(Lemma 2.24). Therefore, Lemma 2.19 implies that:

Ft(wt+1) ≥ Ft(wt) +
σ

2
‖wt −wt+1‖2 .

Repeating the same argument for Ft+1 and its minimizer wt+1 we get

Ft+1(wt) ≥ Ft+1(wt+1) +
σ

2
‖wt −wt+1‖2 .

Summing the above two inequalities and rearranging then, we obtain

σ ‖wt −wt+1‖2 ≤ Ft+1(wt)− Ft(wt) + Ft(wt+1)− Ft+1(wt+1)

= ft(wt)− ft(wt+1). (11)

Next, using the Lipschitzness of ft we get that

ft(wt)− ft(wt+1) ≤ Lt ‖wt −wt+1‖ .

If wt −wt+1 = 0, we have ft(wt)− ft(wt+1) = 0 = Lt ‖wt −wt+1‖ ≤ L2
t

σ
.

If wt −wt+1 6= 0, combining this with Equation (11) and rearranging, we get that ‖wt −wt+1‖ ≤ Lt
σ

, therefore,

ft(wt)− ft(wt+1) ≤ Lt ‖wt −wt+1‖ ≤
L2
t

σ
.

Combining the above Lemma with Lemma 2.10, we obtain

Theorem 2.26. Let f1, ..., fT be a sequence of convex functions such that ft is Lt-Lipschitz with respect to some
norm ‖·‖. Let L be such that 1

T

∑T
t=1 L

2
t ≤ L2. Assume that FoReL is run on the sequence with the regularization

function which is σ-strongly-convex with respect to the same norm. Then, for all u ∈ S,

RegretT (u) ≤ R(u)−R(w1) +
TL2

σ
.

given w1,w2, . . . for FoReL, with w1 = minv∈S R(v) as the initial regret is 0.

2.5.3 Derived Bounds

We now derive concrete bounds from Theorem 2.23. We start with the simplest case of Euclidean regularization,
which is 1-strongly-convex over Rd, hence the following corollary follows.

21

Corollary 2.27. Let f1, ..., fT be a sequence of convex functions such that ft is Lt-Lipschitz with respect to ‖·‖2.
Let L be such that 1

T

∑T
t=1 L

2
t ≤ L2. Assume that FoReL is run on the sequence with the regularization function

R(w) = 1
2η
‖w‖22. Then, for all u

RegretT (u) ≤
1

2η
‖u‖22 + ηTL2

since 1
2
‖w‖22 is 1-strongly-convexity, so 1

2η
‖w‖22 is 1

η
-strongly-convexity.

In particular, if U = {u : ‖u‖2 ≤ B} and η = B
L
√
2T

then

RegretT (U) ≤ BL
√
2T .

Observe that the bound we obtained is identical to the bound of Online-Gradient-Descent given in Corollary 2.16.
Then, we consider the problem of prediction with expert advice. As mentioned previously, the Euclidean regu-

larization cannot be applied into this problem since it does not enforce wt to be in the probability simplex. A simple
solution to enforce the constraint wt ∈ S by setting R(w) = ∞ whenever w 6∈ S. The resulting regularization

function is still strongly convex by Lemma 2.24. (The indicator function I(w) =

0 if w ∈ S

∞ if w 6∈ S
is convex when

the set is convex, and sum of convex function and strongly convex function is strongly convex.)

Corollary 2.28. Let f1, ..., fT be a sequence of convex functions such that ft is Lt-Lipschitz with respect to ‖·‖2.
Let L be such that 1

T

∑T
t=1 L

2
t ≤ L2. Let S be a convex set and assume that FoReL is run on the sequence with

the regularization function

R(w) =

 1
2η
‖w‖22 if w ∈ S

∞ if w 6∈ S

Then, for all u ∈ S,
RegretT (u) ≤

1

2η
‖u‖22 + ηTL2.

In particular, if B ≥ maxu∈S ‖u‖2 and η = B
L
√
2T

then

RegretT (S) ≤ BL
√
2T .

Then, we can apply the regularization function given in the above corollary to the problem of prediction with expert
advice: S is the probability simplex, xt ∈ [0, 1]d. Hence, we can set B = 1 and L = maxx∈S ‖∇ft(x)‖2 =

√
d

which leads to the regret bound of
√
2dT .

We next show another regularization function which leads to a regret bound of
√

2 log(d)T . That is the Entropic
regularization introduced in Example 2.20.

Corollary 2.29. Let f1, ..., fT be a sequence of convex functions such that ft is Lt-Lipschitz with respect to ‖·‖1.
Let L be such that 1

T

∑T
t=1 L

2
t ≤ L2. Let S be a convex set and assume that FoReL is run on the sequence with the

regularization function R(w) = 1
η

∑d
i=1w[i] log(w[i]) and with the set S = {w : ‖w‖1 = B ∧w > 0} ⊂ Rd.

Then,

RegretT (S) ≤
B log(d)

η
+ ηBTL2.

22

In particular, setting η =

√
log(d)

L
√
2T

yields

RegretT (S) ≤ BL
√

2 log(d)T

Proof. By theorem 2.26, say R is σ-strongly-convex, we have for any u ∈ S,

RegretT (u) ≤ R(u)−R(w1) +
TL2

σ

≤ B log(d)

η
+
TL2

σ

≤ B log(d)

η
+ ηBTL2 R is

1

η
· 1
B

-strongly-convex

Note that the Entropic regularization used in the above corollary is strongly convex with respect to the `1 norm, and
therefore the Lipschitzeness requirement of the loss functions is also with respect to the `1 norm.
When applying this to the problem of prediction with expert advice (see section 2.1.1), it’s clear that B = 1, but
we need to be careful with L. In this problem, the loss function ft(w) = 〈w,yt〉 is a linear function. We have by
Corollary 2.15 that,

|ft(w)− ft(u)| = |〈w − u,yt〉| ≤ ‖w − u‖1 ‖yt‖∞ .

Since yt ∈ [0, 1]d, so ‖yt‖∞ ≤ 1. Thus, we can set L = 1, and obtain the regret bound of
√

2 log(d)T .

Remark 2.30. It’s interesting to compare the two bounds given in Corollary 2.25 and Corollary 2.26. In Corollary
2.25, the parameterB imposes an `2 constraint on u and the parameter L captures Lipschitzness of the loss functions
with respect to the `2 norm. In contrast, in Corollary 2.26, the parameter B imposes an `1 constraint on u and the
parameter L captures Lipschitzness of the loss functions with respect to the `1 norm. Therefore, the choice of the
regularization function should depend on the Lipschitzness of the loss functions and on prior assumptions on the set
of competing vectors (does a competing vector have a smaller `1 norm or only a small `2 norm). In the prediction
with expert advice, the competing vector would be a singleton so both the `1 and `2 norms are 1. On the other hand,
the gap between Lipschitzeness with respect to `2 norm (

√
d) and Lipschitzness with respect to `1 norm (1) is large.

Amy: TODO: let’s come up with an example. let’s choose loss functions, and plot regret bounds, to show that
for different choices, sometimes the L2 regularizer is better, but perhaps more often the L1 regularizer is better.

2.6 Online Mirror Descent

A possible disadvantage of the FoReL approach is that it requires solving an optimization problem at each online
round. In this section, we will derive and analyze the family of Online Mirror Descent algorithms from the FoReL
framework. We will show that Online Mirror Descent achieves the same regret bound as FoReL but the update step
is much simpler.

We start with applying FoReL on a sequence of linear functions in which ft(w) = 〈w, zt〉 with some regular-
ization function R(w). Thoughout, we assume that R(w) =∞ ∀w 6∈ S. We use the notation z1:t =

∑t
i=1 zi. Then,

23

we can rewrite the prediction of FoReL as:

wt+1 = argmin
w

R(w) +
t∑
i=1

〈w, zi〉

= argmin
w

R(w) + 〈w, z1:t〉

= argmax
w
〈w,−z1:t〉 −R(w).

Letting

g(θ) = argmax
w
〈w,θ〉 −R(w) (12)

We can now rewrite the FoReL prediction based on the following recursive update rule:

1. θt+1 = θt − zt

(Let θt = −z1:t−1, then θt+1 = −z1:t = −z1:t−1 − zt.)

2. wt+1 = g(θt+1)

(wt+1 = argmaxw〈w,−z1:t〉 −R(w) = g(θt+1).)

Now, if ft is convex but not linear, we can use the same technique we used for deriving the Online Gradient
Descent algorithm and use sub-gradients of ft at wt to linearize the problem. That is, letting zt be a sub-gradient of
ft at wt, we have that for all u ∈ U

ft(u) ≥ ft(wt) + 〈u−wt, zt〉
ft(wt)− ft(u) ≤ 〈wt, zt〉 − 〈u, zt〉

T∑
t=1

ft(wt)− ft(u) ≤
T∑
t=1

〈wt, zt〉 − 〈u, zt〉.

Summing over t we obtain that the regret with respect to the nonlinear loss functions (ft(wt)) is upper bounded by
the regret with respect to the linear functions (〈wt, z〉). This yields the Online Mirror Descent framework.

Algorithm 9 Online Mirror Descent (OMD)

1: parameter: a link function g : Rd −→ S, defined by Equation (12)
2: initialize: θ1 = 0

3: for t=1,2,... do
4: predict wt = g(θt)

5: update θt+1 = θt − zt where zt ∈ ∂ft(wt)

6: end for

wt = g(θt)

wt+1 = g(θt+1)

wt+1 −wt = −ηzt
θt+1 − θt = −zt

24

Algorithm 10 Deni: how about this? Online Mirror Descent (OMD)

1: parameter: a link function g : Rd −→ S, defined by Equation (12)
2: initialize: θ1 = 0

3: for t=1,2,... do
4: predict wt = g(θt)

5: update θt+1 = θt − ηzt where zt ∈ ∂ft(wt)

6: end for

Online Gradient Descent is a special case of Online Mirror Descent where S = Rd and g(θ) = ηθ, for some
η > 0. When g is nonlinear, we obtain that the vector θ is updated by subtracting the gradient out of it, but the actual
prediction is “mirrored” or “linked” to the set S via the function g. This is why g is often referred to as a link function.

Now, we will first give a generic bound for the OMD family based on our analysis of FoReL rule.

Theorem 2.31. Let R be a 1
η
-strongly-convex function over S with respect to a norm ‖·‖. Assume that OMD is

run on the sequence with a link function

g(θ) = argmax
w∈S

(〈w,θ〉 −R(w)). (13)

Then, for all u ∈ S,

RegretT (u) ≤ R(u)−min
v∈S

R(v) + η
T∑
t=1

‖zt‖2∗ ,

where ‖·‖∗ is the dual norm. Furthermore, if ft is Lt-Lipschitz with respect to ‖·‖, then we can further upper
bound ‖z‖∗ ≤ Lt.

Proof. As we have shown previously,

T∑
t=1

(ft(wt)− ft(u)) ≤
T∑
t=1

〈wt − u, zt〉,

and this OMD algorithm is equivalent to running FoReL on the sequence of linear functions with the regularization
R(w). Recall Theorem 2.26 and Lemma 2.16, the theorem follows directly form them.

2.6.1 Derived Algorithms

We now derive additional algorithms from the OMD framework.

The first algorithm we derive is often called normalized Exponential Gradient. In this algorithm, S = {w :

‖w‖1 = 1 ∧w ≥ 0} is the probability simplex and g : Rd −→ S is the vector-valued function whose ith component
is the function

gi(θ) =
eηθ[i]∑
j e

ηθ[j]
(14)

25

Therefore,

wt+1[i] =
eηθt+1[i]∑
j e

ηθt+1[j]

=
eηθt+1[i]∑
j e

ηθt+1[j]
·
∑

k e
ηθt[k]∑

k e
ηθt[k]

=
eηθt[i]e−ηzt[i]∑
j e

ηθt[j]e−ηzt[j]
·
∑

k e
ηθt[k]∑

k e
ηθt[k]

Since θt+1 = θt − zt

=
wt[i]e

−ηzt[j]∑
j wt[j]e

−ηzt[j]

Algorithm 11 Normalized Exponential Gradient (normalized-EG)
1: parameter: η > 0

2: initialize: w1 = (1
d
, ..., 1

d
)

3: update rule:
4: ∀i, wt+1[i] =

wt[i]e−ηzt[j]∑
j wt[j]e

−ηzt[j] where zt ∈ ∂ft(wt)

Corollary 2.32. The normalized-EG algoritm enjoys the regret bound given in Corollary 2.29:

RegretT (S) ≤
log(d)

η
+ ηTL2

with B = 1.

Proof. To analyze the normalized-EG, we rely on Theorem 2.31. Let R(w) = 1
η

∑
iw[i] log(w[i]) be the Entropic

regularization, let S be the probability simplex, and recall that R is 1
η
-strongly-convex over S with respect to the `1

norm.
Using the technique of Lagrange multipliers, it’s easy Amy: FOR DENI! to verify that the link function in

Equation (14) is the solution to the optimization problem given in Equation (13). Therefore, Theorem 2.31 yields:
for all u ∈ S, Sadie: added here

RegretT (u) ≤ R(u)−min
v∈S

R(v) + η

T∑
t=1

‖zt‖2∗

≤ R(u) + η

T∑
t=1

‖zt‖2∗

≤ log(d)

η
+ ηTL2 1

η

∑
i

w[i] log(w[i]) ≤ log(d)

η
, ‖zt‖∗ ≤ L2

t

Next, we derive an algorithm which is called Online Gradient Descent with Lazy Projections. To derive the

26

algorithm, let S be a convex set and define

g(θ) = argmin
w∈S

‖w − ηθ‖2 .

Amy: please add verification right here That is, g(θ) returns the point in S which is closest to ηθ.

Algorithm 12 Online Gradient Descent with Lazy Projections
1: parameter: η > 0 and a convex set S
2: initialize: θ1 = 0

3: for t=1,2,...,T do
4: wt = g(θt) = argminw∈S ‖w − ηθ‖2
5: θt+1 = θt − zt where zt ∈ ∂ft(wt)

6: end for

Corollary 2.33. Online Gradient Descent with Lazy Projections enjoys the same regret bound given in Corol-
lary 2.28: For all u ∈ S,

RegretT (u) ≤
1

2η
‖u‖22 + ηTL2.

In particular, if B ≥ maxu∈S ‖u‖2 and η = B
L
√
2T

then

RegretT (S) ≤ BL
√
2T .

Proof. To analyze the Online Gradient Descent with Lazy Projections algorithm, we consider the Euclidean reg-
ularization function R(w) = 1

2η
‖w‖22, which is 1

η
-strongly-convex over S with respect to the `2 norm. We have

that

argmax
w∈S

(〈w,θ〉 −R(w)) = argmax
w∈S

(
〈w,θ〉 − 1

2η
‖w‖22

)
= argmax

w∈S

(
〈w, ηθ〉 − 1

2
‖w‖22

)
= argmin

w∈S

(
1

2
‖w‖22 − 〈w, ηθ〉

)
= argmin

w∈S

(
1

2
‖w‖22 − 〈w, ηθ〉+

1

2
‖ηθ‖22

)
= argmin

w∈S

1

2
‖w − ηθ‖22

= argmin
w∈S

‖w − ηθ‖2

Therefore, by Theorem 2.31, we can conclude that for all u ∈ S,

RegretT (u) ≤ R(u)−min
v∈S

R(v) + η

T∑
t=1

‖zt‖2∗

≤ 1

2η
‖u‖22 + ηTL2 since ‖zt‖∗ ≤ Lt

27

Finally, we derive the p-norm algorithm, in which S = Rd and

gi(θ) = η
sign(θ[i])|θ[i]|p−1

‖θ‖p−2p

where p ≥ 2 is a parameter and

‖θ‖p =

(
d∑
i=1

|θ[i]|p
) 1

p

Algorithm 13 p-norm
1: parameter: η > 0 and p > 2

2: initialize: θ1 = 0

3: for t=1,2,...,T do
4: ∀i, wt,i = η sign(θ[i])|θ[i]|p−1

‖θ‖p−2
p

5: θt+1 = θt − zt where zt ∈ ∂ft(wt)

6: end for

Corollary 2.34. Let f1, ..., fT be a sequence of convex functions such that ft is LT -Lipschitz over Rd with respect
to ‖·‖q. Let L be such that 1

T

∑T
t=1 L

2
t ≤ L2. Then, for all u, the regret of the p-norm algorithm satisfies

RegretT (u) ≤
1

2η(q − 1)
‖w‖2q + ηTL2.

In particular, if U = {u : ‖u‖q ≤ B} and η = B

L
√

2T/(q−1)
then

RegretT (U) ≤ BL

√
2T

q − 1

Proof. To analyze the p-norm algorithm, we consider the regularization function R(w) = 1
2η(q−1) ‖w‖

2
q , where

q = p
p−1 . If q ∈ (1, 2], then 1

2η(q−1) ≥
1
2η

, then R is 1
η
-strongly-convex over Rd with respect to `q norm. It is also

possible to verify that g(θ) = argmaxw〈w,θ〉−R(w) Sadie: I still don’t know how to do that, Lagrange multiplier?.
Therefore, by Theorem 2.31, we can conclude that for all u, the regret of the p-norm algorithm satisfies

RegretT (u) ≤
1

2η(q − 1)
‖w‖2q + ηTL2.

Note that when q = 2, the link function becomes g(θ) = ηθ and the p-norm algorithm becomes the Online
Gradient Descent algorithm. When q is close to 1, we can see that the p-norm algorithm behaves like the Entropic
regularization. In particular, when p = log(d), we can obtain a regret bound similar to the regret bound of the EG
algorithm. Intermediate values of q enables us to interpolate between the properties of the Entropic and Euclidean
regularizations.

28

2.7 The Language of Duality

In this section, we present a different proof technique that relies on duality. Here are some reasons to consider
this different approach:

1. It is easier to derive tighter bounds based on duality approach. In particular, we will tighten the regret bounds
we derived for the OMD framework by a factor of

√
2.

2. It may become convenient for developing new algorithms.

3. Many previous papers on online learning uses the language of duality.

2.7.1 Fenchel Conjugacy

There are two equivalent representations of a convex function. Either as pairs (x, f(x)) or as the set of tangents
of f , namely pairs of the form (slope, intersection-with-y-axis). The function f ∗ that related slopes of tangents to

Figure 2: Left: pair (x, f(x)). Right: pair (slope,intersection-with-y-axis)

their intersection with the y-axis is called the Fenchel conjugate of f , and is formally defined as

f ∗(θ) = max
u
〈u,θ〉 − f(u).

It is possible to show that f = (f ∗)∗ if and only if f is closed and convex function Sadie: maybe need to add
proof here. From now on, we always assume that our functions are closed and convex.

The definition of Fenchel conjugate immediately implies Fenchel-Young inequality:

∀u, f ∗(θ) ≥ 〈u,θ〉 − f(u). (15)

It is possible to show Sadie: maybe need to add proof here, and examples that the equality holds if u is a sub-gradient
of f ∗ at θ and in particular, if f ∗ is differentiable, equality holds when u = ∇f ∗(θ).

29

Here is a list of several Fenchel conjugate pairs. Recall that given a set S, we use the notation

IS(w) =

0 w ∈ S

∞ w 6∈ S

2.7.2 Bregman Divergences and the Strong/Smooth Duality

A differentiable function R defines a Bergman divergence between two vectors as follows:

DR(w||u) = R(w)− (R(u) + 〈∇R(u),w − u〉). (16)

That is, the Bregman divergence is the difference, at the point w, between R and its linearization around u. When
R is convex, the Bregman divergence if always non-negative. However, it is not a metric measure because it is not
symmetric and also does not satisfy the triangle inequality.

When R(w) = 1
2
‖w‖22, the Bregman divergence is DR(w||u) = 1

2
‖w − u‖22.

When R(w) =
∑

iw[i] log(w[i]), the Bregman divergence between two vectors in the probability simplex
becomes the Kullback-Leibler divergence, DR(w||u) =

∑
iw[i] log

w[i]
u[i]

.
Recall the definition of strong-convexity (definition 2.18). If R is differentiable, we can rewrite the σ-strong-

convexity requirement as

DR(w||u) ≥
σ

2
‖w − u‖2

definition 2.18:

∀z ∈ ∂f(w), ∀u ∈ S, f(u) ≥ f(w) + 〈z,u−w〉+ σ

2
‖u−w‖2

Definition 2.35. A function R is σ-strongly-smooth with respect to a norm ‖·‖ if it is differentiable and for all
u,w we have

DR(w||u) ≤
σ

2
‖w − u‖2

∀z ∈ ∂f(w), ∀u ∈ S, f(u) ≤ f(w) + 〈z,u−w〉+ σ

2
‖u−w‖2

Not surprisingly, strong convexity and strong smoothness are dual properties.

30

Lemma 2.36 (Strong/Smooth Duality). Assume that R is a closed and convex function. Then R is β-strongly
convex with respect to a norm ‖·‖ if and only if R∗ is 1

β
-strongly smooth with respect to the dual norm ‖·‖∗.

Proof. Sadie: make up proof later? search up online

The above lemma implies in particular that if R is strongly convex then R∗ is strongly smooth, and thus differ-
entiable. Based on Section 2.7.1, this also implies that

∇R∗(θ) = argmax
w

(〈w,θ〉 −R(w)) (17)

Since we say if f ∗ is differentiable, f ∗(θ) = 〈u,θ〉−f(u) holds when u = ∇f ∗(θ). That is, f ∗(θ) = maxu〈u,θ〉−
f(u) = 〈∇f ∗(θ),θ〉 − f(∇f ∗(θ)) =⇒ ∇f ∗(θ) = argmaxw(〈w,θ〉 − f(w)). Amy: seems important. make a
lemma! Amy: prove via Danskin’s theorem in two lines

2.7.3 Analyzing OMD using Duality

Recall that the OMD rule is
wt = g(θt) = g(−z1:t−1),

where the link function g is
g(θ) = argmax

w
(〈w,θ〉 −R(w)).

Based on eq. (17), we can also rewrite g(θ) = ∇R∗(θ).

Lemma 2.37. Suppose that OMD is run with a link function g = ∇R∗. Then, its regret is upper bounded by

T∑
t=1

〈wt − u, zt〉 ≤ R(u)−R(w1) +
T∑
t=1

DR∗(−z1:t|| − z1:t−1).

Furthermore, equality holds for the vector u that minimizes R(u) +
∑

t〈u, zt〉.

Proof. Amy: please insert something about the LHS of the inequality to start or the end of the proof. First, using
Fenchel-Young inequality (eq. (15)), we have for all u,

R∗(θ) ≥ 〈u,θ〉 −R(u)

R(u) +
T∑
t=1

〈u, zt〉 = R(u)− 〈u,−z1:T 〉 ≥ −R∗(−z1:T),

where equality holds for the vector u that maximizes 〈u,−z1:T 〉 −R(u), hence minimizes R(u) + 〈u, z1:T 〉.
Second, using the fact that wt = g(−z1:t−1) = ∇R∗(−z1:t−1) and the definition of the Bregman divergence, we

can rewrite the RHS as

−R∗(−z1:T) = −R∗(0)−
T∑
t=1

(R∗(−z1:t)−R∗(−z1:t−1)) the sum term equals R∗(−z1:T)−R∗(0)

= −R∗(0)−
T∑
t=1

(DR∗(−z1:t|| − z1:t−1)− 〈wt, zt〉)

= −R∗(0) +
T∑
t=1

(〈wt, zt〉 −DR∗(−z1:t|| − z1:t−1)) (18)

31

(Since DR∗(−z1:t|| − z1:t−1) = R∗(−z1:t) − R∗(−z1:t−1) + 〈∇R∗(−z1:t−1,−zt〉 = R∗(−z1:t) − R∗(−z1:t−1) −
〈wt, zt〉.)
Note that R∗(0) = maxw〈0,w〉 − R(w) = −minwR(w) = −R(w1). Combining all the above we conclude the
proof.

It is interesting to compare the above lemma to lemma 2.10, which for linear functions yields the regret bound

T∑
t=1

〈wt − u, zt〉 ≤ R(u)−R(w1) +
T∑
t=1

〈wt −wt+1, zt〉.

We can easily derive concrete bounds from lemma 2.37 if R is strongly convex.

Theorem 2.38. LetR be a 1
η
-strongly convex function with respect to a norm ‖·‖ and suppose the OMD algorithm

is run with the link function g = ∇R∗. Then,

T∑
t=1

〈wt − u, zt〉 ≤ R(u)−R(w1) +
η

2

T∑
t=1

‖zt‖2∗ .

Proof. Since R is 1
η
-strongly convex, by lemma 2.36, we know that R∗ is η-strongly smooth with respect to norm

‖·‖∗.
Thus, by definition of strongly smooth, we have

DR∗(−z1:t|| − z1:t−1) ≤
η

2
‖−z1:t − (−z1:t−1)‖2∗ =

η

2
‖zt‖2∗ .

Therefore, we can conclude that

T∑
t=1

〈wt − u, zt〉 ≤ R(u)−R(w1) +
η

2

T∑
t=1

‖zt‖2∗ .

2.7.4 Other Proof Technique

In the previous section, we used Fenchel-Young inequality to derive bounds for OMD, which is equivalent to
FoReL when the loss functions are linear. It is possible to extent this proof technique, based on Fenchel duality, and
to derive a larger family of online convex optimization algorithms. Ths basic idea is to derive the Fenchel dual of the
optimization problem minuR(u)+

∑
t ft(u), and to construct an online learning algorithm by incrementally solving

the dual problem.
Another popular approach is to derive regret bounds by monitoring the Bregman divergence DR(wt||u) where

u is the competing vector. It is important to note that the analysis using the Bregman divergence potential requires
that R will be a Legendre function. In particular, Legendre functions guarantee the property that ∇R and ∇R∗ are
inverse mappings.

To the best of our knowledge, the two proof techniques lead to the same regret bounds.

32

2.8 Bounds with Local Norms

Consider running the normalized EG algorithm, namely, running FoReL on linear loss function with the normal-
ized entropy R(w) = 1

η

∑
iw[i] log(w[i]) + IS(w), where S = {w ≥ 0 : ‖w‖1 = 1}. Previously, we have derived

the regret bound:

T∑
t=1

〈wt − u, zt〉 ≤
log(d)

η
+ η

T∑
t=1

‖zt‖2∞ .

Note that the dual norm of ‖·‖1 is ‖·‖∞.
We now derive a refined bound for the normalized EG algorithm, in which each term ‖zt‖2∞ is replaced by a

term
∑

iwt[i]zt[i]
2. Since wt is in the probability simplex, we clearly have that

∑
iwt[i]zt[i]

2 ≤ ‖zt‖2∞. (Note that
‖zt‖∞ = maxi |zt[i]|.)

In fact, we can rewrite
∑

iwt[i]zt[i]
2 as a local norm ‖zt‖2t where

‖z‖t =
√∑

i

wt[i]z[i]2.

Theorem 2.39. Assume that the normalized EG algorithm is run on a sequence of linear loss functions sych that
fir all t, i, we have ηzt[i] ≥ −1. Then,

T∑
t=1

〈wt − u, zt〉 ≤
log(d)

η
+ η

T∑
t=1

∑
i

wt[i]zt[i]
2.

Proof. Using lemma 2.37, it suffices to show that

DR∗(z1:t|| − z1:t−1) ≤ η
∑
i

wt[i]zt[i]
2,

where, based on section 2.7.1, the conjugate function is

R∗(θ) =
1

η
log

(∑
i

eηθ[i]

)
.

Indeed,

DR∗(z1:t|| − z1:t−1) = R∗(−z1:t)−R∗(−z1:t−1) + 〈wt, zt〉 (19)

=
1

η
log

(∑
i e
−ηz1:t[i]∑

i e
−ηz1:t−1[i]

)
+ 〈wt, zt〉 (20)

=
1

η
log

(∑
i

wt[i]e
−t[i]
)
+ 〈wt, zt〉. (21)

33

Using the inequality e−a ≤ 1 − a + a2 which holds for all a ≤ −1 (and hence holds by the assumptions of the
theorem) we obtain

DR∗(z1:t|| − z1:t−1) ≤
1

η
log

(∑
i

wt[i](1− ηzt[i] + η2zt[i]
2)

)
+ 〈wt, zt〉.

Next, we use the fact that
∑

iwt[i] = 1 and the inequality log(1 − a) ≤ −a, which holds for all a ≤ 1, we
obtain

DR∗(z1:t|| − z1:t−1) ≤
1

η
log

(∑
i

wt[i](−ηzt[i] + η2zt[i]
2)

)
+ 〈wt, zt〉

= η
∑
i

wt[i]zt[i]
2.

34

2.9 Online Convex Optimization Algorithms Summary

See the table on next page.

35

Convex Optimization Algorithms

Name Update
Rule(General)

Conditions update
Rule(Specific)

Regret Bound

Follow-
the-Leader

∀t,wt =

argminw∈S
∑t−1

i=1 fi(w)

(Online Quadratic Optimization)
S = Rd,
ft(w) = 1

2
‖w − zt‖22 for some zt.

Let L = maxt ‖zt‖.

None 4L2(log(T) + 1)

Follow-
the-
Regularized-
Leader

∀t,wt =

argminw∈S
∑t−1

i=1 fi(w)

+R(w)

(Online Linear Optimization)
S = Rd,
ft(w) = 〈w, zt〉 for some zt,
R(w) = 1

2η
‖w‖22.

Let B = max ‖u‖, and
let L be such that 1

T

∑T
t=1 ‖zt‖

2
2 ≤ L2.

Set η = B
L
√
2T

.

None BL
√
2T

(Online Gradient Descent)
ft is convex and Lt-Lipschitz with
respect to ‖·‖2,
R(w) = 1

2η
‖w‖22.

Let B = max ‖u‖2, and
let L be such that 1

T

∑T
t=1 L

2
t ≤ L2.

Set η = B
L
√
2T

.

wt+1 = wt − ηzt
where η ∈ ∂ft(wt)

BL
√
2T

(Prediction with Expert Advice I)
S is a convex set,
ft is convex and Lt-Lipschitz with
respect to ‖·‖2,

R(w) =

 1
2η
‖w‖22 w ∈ S

∞ w 6∈ S
.

Let B > max ‖u‖2, and
let L be such that 1

T

∑T
t=1 L

2
t ≤ L2.

Set η = B
L
√
2T

.

None

BL
√
2T .

In this case, B = 1,
L =
√
d, so regret

bound is
√
2dT .

(Prediction with Expert Advice II)
S = {w : ‖w‖1 = B ∧w > 0}
⊂ Rd is a convex set,
ft is convex and Lt-Lipschitz with
respect to ‖·‖1,
R(w) = 1

η

∑
iw[i] log(w[i]).

Let L be such that 1
T

∑T
t=1 L

2
t ≤ L2.

Set η =

√
log(d)

L
√
2T

.

None

BL
√

2 log(d)T .
In this case, B = 1,

L = 1, so regret
bound is

√
2 log(d)T .

36

Convex Optimization Algorithms (Cont.)

Name Update
Rule(General)

Conditions update
Rule(Specific)

Regret Bound

Online
Mirror
Descent

predict wt = g(θt)

update θt+1 = θt − zt

where zt ∈ ∇ft(wt).

(Normalized Exponentiated
Gradient)
S = {w : ‖w‖1 = 1 ∧w > 0}
is the probability simplex,
gi(θ) =

eηθ[i]∑
j e
ηθ[j] ,

R(w) = 1
η

∑
iw[i] log(w[i]).

Let L be such that 1
T

∑T
t=1 L

2
t ≤ L2.

Set η =

√
log(d)

L
√
2T

.

∀i, wt+1[i] =
wt[i]e−ηzt[j]∑
j wt[j]e

−ηzt[j]

where
zt ∈ ∂ft(wt).

√
2 log(d)T

(Online Gradient Descent
with Lazy Projection)
S is a convex set,
g(θ) = argminw∈S ‖w − ηθ‖2.
R(w) = 1

2η
‖w‖22,

Let B = max ‖u‖2, and
let L be such that 1

T

∑T
t=1 L

2
t ≤ L2.

Set η = B
L
√
2T

.

wt = argminw∈S

‖w − ηθt‖2,
θt+1 = θt − zt

where
zt ∈ ∂ft(wt).

BL
√
2T

(p-norm)
S = Rd,
gi(θ) = η sign(θ[i])|θ[i]|p−1

‖θ‖p−2
p

,

R(w) = 1
2η(q−1) ‖w‖

2
q (q = p

p−1).

Let B = max ‖u‖q, and
let L be such that 1

T

∑T
t=1 L

2
t ≤ L2.

Set η = B

L
√

2T/(q−1)
.

Note: when q = 2, this becomes
OGD

∀u, wt,i =
η sign(θ[i])|θ[i]|p−1

‖θ‖p−2
p

,

θt+1 = θt − zt

where
zt ∈ ∂ft(wt).

BL
√

2T
q−1

(Applying duality idea)
g(θ) = ∇R∗,
R(w) = 1

2η
‖w‖22.

Let B = max ‖u‖2, and
let L be such that 1

T

∑T
t=1 L

2
t ≤ L2.

Set η = B
L
√
T

.

None BL
√
T

37

	Introduction
	Examples
	A Gentle Start
	Realizability Assumption
	Randomization

	Notation and Basic Definitions

	Online Convex Optimization
	Convexification
	Convexification by Randomization
	Convexification by Surrogate Loss function

	Follow-the-leader
	Follow-the-Regularized-Leader
	The Doubling Trick

	Online Gradient Descent: Linearization of Convex Functions
	Strong Convex Regularizers
	Strong Convexity
	Analyzing FoReL with Strongly Convex Regularizers
	Derived Bounds

	Online Mirror Descent
	Derived Algorithms

	The Language of Duality
	Fenchel Conjugacy
	Bregman Divergences and the Strong/Smooth Duality
	Analyzing OMD using Duality
	Other Proof Technique

	Bounds with Local Norms
	Online Convex Optimization Algorithms Summary

