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1 Preliminaries

We use Roman uppercase letters to denote sets, e.g., S. We us bold uppercase letters to denote matrices or
tensors, e.g.,X , and bold lowercase letters to denote vectors, e.g., p, and Roman lowercase letters to denote scalar
quantities, e.g., c. We use a subscript i to denote the ith component of a tensor, e.g. Xi, or the ith row vector of
a matrix by the equivalent bold lowercase letter with subscript i (e.g., xi) Similarly, we denote the jth entry of a
vector (e.g., p or xi) by the equivalent Roman lowercase letter with subscript j (e.g., pj or xij). We denote the set of
numbers {1, . . . , n} by [n], the set of natural numbers by N, the set of real numbers by R, the set of non-negative
real numbers by R+ and the set of strictly positive real numbers by R++.

We also de�ne some set operations. Unless otherwise stated, the sum of a scalar by a set and of two sets is
de�ned as the Minkowski sum, e.g., c + A = {c + a | a ∈ A} and A + B = {a + b | a ∈ A, b ∈ B}, and
the product of a scalar by a set and two sets is de�ned as the Minkowski product, e.g., cA = {ca | a ∈ A} and
AB = {ab | a ∈ A, b ∈ B}.

2 Utilities

2.1 Preference Relations & Utility Functions

An important feature of economic markets is that they aggregate the preferences of consumers to what we
know as prices. As a result, in order to de�ne clear market model, we have to understand clearly the theory of
utility functions.

Suppose an agent chooses from a set of goods G = {1, 2, 3, . . .}. For example, one can think of these goods as
di�erent TV sets or cars. Given two goods, x ∈ G and y ∈ G:

• the agent weakly prefers x over y if x is at least as good as y. To avoid us having to write "weakly prefers"
repeatedly, we simply write x < y.
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• the agent strongly prefers x over y if x is better than y. To avoid us having to write "strongly prefers"
repeatedly, we simply write x � y.

We now put some basic structure on the agent’s preferences by adopting two axioms.

Axiom 2.1 (Completeness Axiom). A preference relation < on G is complete if for every pair x, y ∈ X, either
x < y, y < x, or both.

Axiom 2.2 (Transitivity Axiom). A preference relation < on G is transitive if for every triple x, y, z ∈ X, if x < y

and y < z then x < z

An agent has complete preferences if they can compare any two objects. An agent has transitive prefer-
ences if their preferences are internally consistent. While it is natural to think about preferences, it is often more
convenient to associate di�erent numbers to di�erent goods, and have the agent choose the good with the highest
number. These numbers are called utilities. In turn, a utility function tells us the utility associated with each good
x ∈ X, and is denoted by u(x) ∈ R.

De�nition 2.3 (Utility Function). We say a utility function u : G→ R represents an agent’s preferences if for all
x, y ∈ G, u(x) ≥ u(y) if and only if x < y, that is:

∀x, y ∈ G, u(x) ≥ u(y) ⇐⇒ x < y (1)

This means than when an agent has a choice that she prefers to all others according to her preference relation
<, if < can be represented by a utility function u : G→ R then that choice should maximize u. That is, let S ⊂ G

be a compact set1:

∀y ∈ S ⊂ G, x < y ⇐⇒ x ∈ arg max
z∈S

u(z) (2)

Theorem 2.4 (Utility Representation Theorem for Finite Choice Sets). Suppose the agent’s preferences, <, are
complete and transitive, and that the choice set G is �nite. Then there exists a utility function u : G → R which
represents <

Proof. For any good x, let NBT(x) = {y ∈ X|x < y} be the goods that are "no better than" x. The utility of x is
simply given by the number of items in NBT(x). That is

u(x) = |NBT(x)| (3)

We now verify that the construction we have given is valid. Suppose x < y. Pick any z ∈ NBT(y) by the
de�nition of NBT(y),we have y < z since preferences are complete, we know that z is comparable to x.Transitivity
then tells us that x < z, so z ∈ NBT(x).We have therefore shown that every element of NBT(y) is also an element
of NBT(x), that is, NBT(y) ⊆ NBT(x). As a result,

u(x) = |NBT(x)| ≥ |NBT(y)| = u(y) (4)

which con�rms our claim.
1Note that compactness of the choice set S is a su�cient condition for the existence of an element of S that maximizes <
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Things get more complicated when the choice set of the agents G becomes in�nite, e.g., if G = R or G = Rn.
In this case, the completeness and transitivity axioms are not enough for utility functions to represent a preference
relation. For this reason we have to introduce the continuity axiom.

Axiom 2.5 (Continuity axiom). A preference relation < on G is continuous if for any sequence {(xn, yn)}∞n=1 such
that xn < yn and (xn, yn)→ (x, y), we have x < y.

Adding the continuity axiom to our two previous axioms, we can obtain a result similar to theorem 2.4 for
in�nite choice sets.

Theorem 2.6 (Utility Representation Theorem for In�nite Choice Sets). Suppose the agent’s preferences,<, are
complete, transitive, and continuous, and that the choice set G is in�nite. Then there exists a continuous utility
function u : G→ R which represents <.

Theorem 2.7 (Preference Invariance under Monotone Transformations). Suppose u : G → R represents the
agent’s preferences, <, and f : R → R is a strictly increasing function. Then the new utility function v(x) =

f(u(x)) also represents the agent’s preferences <.

Proof: The proof is simply a rewriting of de�nitions. Suppose u(x) represents the agent’s preferences. If x < y

then u(x) ≥ u(y) and f(u(x)) ≥ f(u(y)), so that v(x) ≥ v(y). Conversely, if v(x) ≥ v(y) then, since f(.) is
strictly increasing, u(x) ≥ u(y) and x < y. Hence v(x) ≥ v(y) if and only if x < y and v(x) represents <.

2.2 Properties of Preferences

From now on, we will assume that the choice set G is Rm
+ where m is the number of goods in the market. A

bundle of goods is simply a vector x ∈ Rm
+ where xi ≥ 0 refers to amount of good i chosen by the agent.

De�nition 2.8 (Monotonicity). Preferences aremonotone if for any two bundles x ∈ Rm and y ∈ Rm

xi ≥ yi for each i (5)
xi > yi for some i (6)

implies x � y

In words, preferences are monotone if more of any good makes the agent strictly better o�. While monotonicity
is stated in terms of preferences, we can rewrite it in terms of utilities.

A preference relation < represented by a utility function u : Rm → R is monotone if for any two bundles
x,y ∈ Rm:

xi ≥ yi for each i (7)
xi > yi for some i (8)

implies u(x) > u(y).
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De�nition 2.9 (Non-Satiation). A preference relation is non-satiated:

∀x ∈ Rm, ε > 0, ∃y ∈ Bε(x), y � x (9)

where Bε(x) is the ball of radius ε centered at x.

In words, for any bundle of goods, there exists an arbitrarily close bundle of goods that is preferred. While
non-satiation is de�ned in terms of preferences, we can rewrite it in terms of utilities. A preference relation <
represented by a utility function u : Rm → R is non-satiated if :

∀x ∈ Rm, ε > 0, ∃y ∈ Bε(x), u(y) > u(x) (10)

Convexity Preferences are convex if whenever x < y then

λx+ (1− λ)y < y for all λ ∈ [0, 1] (11)

Convexity means that the agent prefers balanced bundles of goods to extreme bundles: if the agent is indi�erent
between x and y then they prefers the average λx+ (1− λ)y to either just x or y. We can write this assumption
in terms of utility functions. Preferences are convex if:

u(λx+ (1− λ)y) ≥ min {u(x), u(y)} for all λ ∈ [0, 1] (12)

Slightly confusingly, a utility function that satis�es (14) is called quasi-concave. Note that any concave func-
tion is also quasi-concave.

De�nition 2.10 (Convexity). Preferences are convex if whenever x < y then

λx+ (1− λ)y < y for all λ ∈ [0, 1] (13)

Convexity captures the idea that the agent likes diverse bundles of goods We can write this assumption in
terms of utility functions. A preference relation < represented by a utility function u : Rm → R is convex if:

u(λx+ (1− λ)y) ≥ min {u(x), u(y)} for all λ ∈ [0, 1] (14)

Slightly confusingly, a utility function that satis�es (14) is called quasi-concave. Note that any convex func-
tion is also quasi-convex.

2.3 Properties of utility functions

We quickly review some important properties of utility functions. Recall that a set U is open if for all x ∈ U
there exists an ε > 0 such that the open ball Bε(x) centered at x with radius ε is a subset of U , i.e., Bε(x) ⊂ U .

De�nition 2.11 (Continuity). A function f : Rm → R is said to be continuous if f−1(U) is open for every U ⊂ R.
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The de�nition of continuity we give a topological one but it is equivalent to the ε− δ de�nition you might be
familiar with.

De�nition 2.12 (Quasi-concave). A function f : Rm → R is said to be concave if

∀λ ∈ (0, 1),x,y ∈ Rm, f(λx+ (1− λ)y) ≥ min {f(x) + f(y)} (15)

If the inequality holds strictly, the f is strictly quasi-concave. A utility function is (strictly) quasi-concave i� it
represents (strictly) convex preferences.

De�nition 2.13 (Concave). A function f : Rm → R is said to be concave if

∀λ ∈ (0, 1),x,y ∈ Rm, f(λx+ (1− λ)y) ≥ λf(x) + (1− λ)f(y) (16)

If the inequality holds strictly, the f is strictly concave.
Note that any concave function is also quasi-concave.

De�nition 2.14 (Monotone). A function f : Rm → R ismonotone if:

∀x ≥ y, f(x) ≥ f(y) (17)

If the inequality holds strictly then f is strictly monotone. Note that a utility function is monotone i� it represents
monotone preferences.

De�nition 2.15 (Homogeneous). A function f : Rm → R is said to be homogeneous of degree k if

∀x ∈ Rm, λ > 0, f(λx) = λkf(x) (18)

Preferences represented by any homogeneous utility function are called homothetic preferences.
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3 Consumer Theory Basics

Consumer theory is concerned with how rational agents, i.e., agents that behave according to their prefer-
ences, make consumption decisions. We call the bundle of goods that a consumer decides to buy a consumer’s
demand. In consumer theory, the demand of buyers can be determined by studying two dual problems, the utility
maximization problem (UMP) and the expenditure minimization problem (EMP). The UMP refers to the
buyer’s problem of maximizing its utility constrained by its budget in order to obtain its optimal demand, while
the EMP refers to the buyer’s problem of minimizing its expenditure constrained by its desired utility level (i.e.,
optimizing its expenditure function) in order to obtain its optimal demand.

Going forward we will mostly focus on agent who have complete, transitive, continuous, locally non-satiated,
and convex preferences. Note that such preferences can be represented with continuous and quasi-concave utility
functions that satisfy non-satiation. We will denote the space of utility functions that are continuous, quasi-concave
and that represent non-satiated preferences on an in�nite choice set G by U(G). With this de�nition in mind we
�rst introduce the UMP.

3.1 Utility Maximization Problem

De�nition 3.1 (Utility Maximization Problem (UMP)). Let (ui, bi) ∈ U(Rm) × R+ be a consumer and p ∈ Rm be
the prices of goods. The utility maximization problem (UMP) of (ui, bi) is de�ned as the following optimization
problem:

max
x:x·p≤bi

ui(x) (19)

That is, the UMP, refers to a consumer’s problem of buying a utility maximizing bundle of goods when it faces a
budget constraint. We can decompose the UMP into two distinct components, 1) the optimal utility, and 2) the the
utility maximizing bundle of good.

3.1.1 Indirect Utility and Marshallian Demand

De�nition 3.2 (Indirect Utility Function). The indirect utility function vi : Rm
+ ×R+ → R+ takes as input prices

p and a budget bi and outputs the maximum utility i buyer can achieve at those prices and budget, i.e., vi(p, bi) =

maxx:p·x≤bi ui(x).

If the utility function ui is continuous, then the indirect utility function is continuous and homogeneous of degree
0 in p and bi jointly, i.e., ∀λ > 0, vi(λp, λb) = vi(p, b), non-increasing in p, strictly increasing in bi, and convex in
p and bi.

De�nition 3.3 (Marshallian Demand). The Marshallian demand is a correspondence di : Rm
+ × R+ ⇒ Rm

+

that takes as input prices p and a budget bi and outputs the utility maximizing allocation of goods for buyer i, i.e.,
di(p, bi) = arg maxxi:p·xi≤bi ui(xi).

The Marshallian demand is convex-valued if the utility function ui is continuous and concave, and unique if the
utility function is continuous and strictly concave.
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3.1.2 Optimality condition for the UMP

We will now derive the �rst order optimality condition2 for the utility maximization problem. That is,
let ui ∈ U(R) be a continuous and concave utility functions, bi > 0, p ∈ Rm and x∗ ∈ Rm

+ . What (�rst order)
conditions should x∗ satisfy to be the utility maximizing demand for the consumer (ui, bi) at prices p. We �rst state
the theorem:

Theorem 3.4 (Equimarginal Principle). Consider the utility maximization problem for a consumer (ui, bi) ∈
U(R)× R at prices p ∈ Rm:

max
x∈Rm+ :x·p≤bi

ui(x) (20)

Then, x∗ is a Marshallian demand for consumer (ui, bi) at prices p i� there exists λ∗ ≥ 0 such that:

x∗j > 0 =⇒ λ∗ =

[
∂ui
∂xj

]
xj=x∗j

pj
∀j ∈ [m] (21)

Proof. Consider the utility maximization problem for a consumer (ui, bi):

max
x∈Rm+ :x·p≤bi

ui(x) (22)

Let λ ∈ R and µ ∈ Rm be the slack variables associated with the budget constraint and non-negativity
constraints respectively. The Lagrangian corresponding to this optimization problem is given by:

L(x, λ,µ) = −ui(x) + λ(x · p− bi)− µTx (23)

Let (x∗, λ∗,µ∗) be a saddle point of the above Lagrangian, i.e., x∗ ∈ minλ,µ≥0 L(x, λ,µ) and
(λ∗,µ∗) ∈ maxx∈Rm L(x, λ,µ). The �rst order optimality conditions of this problem are :

∂L

∂xj
= −

[
∂ui
∂xj

]
xj=x∗j

+ λ∗pj − µj := 0 (24)

λ∗ =

[
∂ui
∂xj

]
xj=x∗j

+ µj

pj
(25)

Additionaly, by the KKT complementarity condition, we know that if xj > 0, then µj = 0. As a result, the
optimality condition for an allocation to be utility maximizing constrained by the budget of the consumer can be
equivalently stated as:

xj > 0⇒ ∃λ∗, such that λ∗ =

[
∂ui
∂xj

]
xj=x∗j

pj
(26)

2i.e., the condition the derivative of the objective function needs to satisfy for the a solution to the problem instance to be optimal
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In other words, an allocation x∗ is optimal if there exists a constant λ∗ ≥ 0, such that for any two goods
j, k ∈ [m] for which x∗j > 0 and x∗k > 0, we have:

[
∂ui
∂xj

]
xj=x∗j

pj
=

[
∂ui
∂xj

]
xk=x

∗
k

pk
(27)

That is, an allocation is optimal if it respects the equimarginal principle! Additionally, the Lagrangian λ cor-
responds to the derivative of the indirect utility function with respect to the budget of the buyer. This quantity is
"the shadow price of wealth" or the marginal utility of income, i.e. λ = ∂

∂bi
vi(p, bi).

3.2 Expenditure Minimization Problem

A problem that is dual, i.e., parallel but di�erent, to the UMP is the EMP de�ned as follows:

De�nition 3.5 (Expenditure Minimization Problem (EMP)). Let (ui, νi) ∈ U(Rm)×R+ be a consumer. The expen-
diture minimization problem is de�ned as follows:

min
x:ui(x)≥νi

p · x (28)

That is, the expenditure minimization problem refers to a consumer’s problem of minimizing their expenditure
while desiring a minimum utility level they would like to achieve.

3.2.1 Expenditure Function and Hicksian Demand

We can decompose the EMP into two distinct components, 1) the minimum spending that achieves the desired
utility level, and 2) the bundle of goods that minimizes the expenditure of the buyer while achieving the desired
utility level.

De�nition 3.6 (Expenditure Function). The expenditure function ei : Rm
+ × R+ → R+ takes as input prices

p and a utility level ν and returns the minimum cost required to achieve the utility level ν at given prices p, i.e.,
ei(p, νi) = minxi:ui(xi)≥νi p · xi.

If the utility function ui is continuous, then the expenditure function is continuous and homogeneous of degree 1
in p and νi jointly, non-decreasing in p, strictly increasing in νi, and concave in p.

De�nition 3.7 (Hicksian Demand). The Hicksian demand is a correspondence hi : Rm
+ × R+ ⇒ R+ that takes

as input prices p and a utility level νi and outputs the cost-minimizing allocation of goods at utility level νi, i.e.,
hi(p, νi) = arg minxi:ui(xi)≥νi p · xi.

If the utility function ui is continuous, then the Hicksian demand is homogeneous of degree 1 in p, and is a convex
set which is unique i� the the utilty function ui of the buyer is strictly concave [14, 15].

3.2.2 Optimality condition for the EMP

We now state the optimality condition for the expenditure minimization problem. We skip the proof as it is
similar to that of theorem 3.4.
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Theorem 3.8 (Equimarginal Principle for the EMP). Consider the expenditure minimization problem for a con-
sumer (ui, νi) ∈ U(R)× R at prices p ∈ Rm:

min
x∈Rm+ :ui(x)≥νi

p · x (29)

Then, x∗ ∈ Rm is a Hicksian demand for consumer (ui, νi) at prices p i� there exists λ∗ ≥ 0 such that:

x∗j > 0 =⇒ λ∗ =
pj[

∂ui
∂xj

]
xj=x∗j

∀j ∈ [m] (30)

The UMP and EMP are related in many ways whether if it is through convex conjugacy duality or via economic
duality. We refer the reader to [4, 14, 15] for a more in-depth discussion of these duality relationships and only note
the following relationship between the UMP and EMP:

∀bi ∈ R+ ei(p, vi(p, bi)) = bi (31)
∀νi ∈ R+ vi(p, ei(p, νi)) = νi (32)
∀bi ∈ R+ hi(p, vi(p, bi)) = di(p, bi) (33)
∀νi ∈ R+ di(p, ei(p, νi)) = hi(p, νi) (34)

A good j ∈ [m] is said to be a gross substitute (resp. complement) for a good k ∈ [m]/{j} if
∑

i∈[n] dij(p, bi)

is increasing (resp. decreasing) in pk. If the aggregate demand,
∑

i∈[n] dij(p, bi), for good k is instead weakly
increasing (resp. weakly decreasing), good j is said to be aweak gross substitute (resp. weak gross complement)
for good k.

3.3 Important Classes of Utility Functions

In this section, we introduce a few important classes of utility functions which are of computational interest.
Let m be the number of goods. Let x ∈ Rm be a bundle of goods in the space of goods. Let u : Rm → R be the
utility function of the agent and let v ∈ Rm be a vector of preference parameters for each good j ∈ [m]. We de�ne
a few important classes of utility functions.

De�nition 3.9 (Linear Utility). Linear Utilities represent preferences over goods that are perfect substitutes. That
is, having more of a good leads the consumer to want less of other goods. An example of this is sugar and arti�cial
sweeteners. If a buyer buys sugar, then it will not use arti�cial sweeteners. Mathematically, linear utilities are de�ned
as:

u(x) =
m∑
j=1

vjxj (35)

Note that linear utilities are a�ne and not strictly convex. As a result, the Marshallian demand and Hicksian
demand is not unique for linear utilities. This means that we do not have closed form solutions for those quantities,
however, since the indirect utility and expenditure function’s output are singleton valued, we have closed form
solutions for those:
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Theorem 3.10 (Linear Utility). Let u : Rm → R be of the form of de�nition 3.9. Then the following holds:

vi(p, b) = max
j∈[m]

(
vj
pj

)
b (36)

ei(p, ν) = min
j∈[m]

(
pj
vj

)
ν (37)

De�nition 3.11 (Leontief Utility). Leontief Utilities represent preferences over goods that are perfect complements.
That is in order to derive utility from one good, the buyer also needs to have more of other goods. An example is that a
buyer needs both the left and right pair of a shoe to derive utility from the shoes. It cannot derive any utility from only
the left or right shoe. Mathematically, Leontief utilities are de�ned as:

u(x) = min
j=1,...,m

{
xj
vj

}
(38)

For Leontief utilities, we have convenient closed form solutions for the UMP and EMP:

Theorem 3.12. Let u : Rm → R be of the form of de�nition 3.11. Then the following holds:

v(p, b) =
b∑

j∈[m] pjvj
(39)

dj(p, b) =
vjb∑

j∈[m] pjvj
∀j ∈ [m] (40)

e(p, ν) = ν
∑
j∈[m]

pjvj (41)

hj(p, ν) = νvj ∀j ∈ [m] (42)

De�nition 3.13 (Cobb-Douglas Utility). Cobb-Douglas Utilities represent preferences over goods that in-between
between perfect substitutes and perfect complements. That is, under Cobb-Douglas utilities a buyer prefers bundle of
goods that are balanced to bundles of goods that are extreme. Mathematically, Cobb-Douglas utilities are de�ned as:

u(x) =
m∏
j=1

x
vj
j (43)

where
∑m

j=1 vj = 1.

For Cobb-Douglas utilities, we have convenient closed form solutions for the UMP and EMP:

Theorem 3.14. Let u : Rm → R be of the form of de�nition 3.13. Then the following holds:
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v(p, b) = b

m∏
j=1

(
vj
pj

)vj
(44)

dj(p, b) =
vjb

pj
∀j ∈ [m] (45)

e(p, ν) = ν

m∏
j=1

(
pj
vj

)vj
(46)

hj(p, ν) = ν

(
vj
pj

) m∏
j=1

(
pj
vj

)vj
∀j ∈ [m] (47)

These three utility functions happen to be special cases of the constant elasticity of substitution (CES)
utility.

De�nition 3.15 (Constant Elasticity of Substitution (CES) Utility). Constant Elasticity of Substitution (CES)
utilities represent preferences over goods for which the rate at which the consumer can change its consumption of any
two goods while staying on the same indi�erence curve is constant and is de�ned as:

u(x) =

(
n∑
i=1

vix
ρ
i

) 1
ρ

(48)

where −∞ < ρ ≤ 1 and ρ 6= 0.

1. When ρ = 1 then the CES utility function is exactly the linear utility function

2. When ρ→ −∞, the CES utility function is exactly the Leontief utility function.

3. When ρ→ 0, the CES utility function is exactly the Cobb-Douglas utility function

To see the above for the limits, one can use l’hopital’s rule to calculate the limit of log(u(x)) at the desired
limit value and from there one can deduce the value of u(x) at the desired limit.3 For 0 < ρ ≤ 1, goods
are weak gross substitutes, for ρ = 1, goods are perfect substitutes, and for ρ < 0, goods are complemen-
tary. For ρ < 1, the CES utility function is strictly concave while it is concave for ρ ≤ 1. To see this you
can take the second derivative of the utility function. Additionally, CES utilities are homogeneous of degree 1
u(λx) = (

∑n
i=1 viλ

ρxρi )
1
ρ = (λρ)

1
ρ (
∑n

i=1 vix
ρ
i )

1
ρ = λ (

∑n
i=1 vix

ρ
i )

1
ρ . The elasticity of substitution of CES utility

functions is given by 1
1−ρ .

For CES utilities with ρ < 1, we have convenient closed form solutions for the UMP and EMP:

Theorem 3.16. Let u : Rm → R be of the form of de�nition 3.15. Then the following holds:

3More on the limit calculation here
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v(p, b) = b

(
n∑
k=1

v
1

1−ρ
k p

ρ
ρ−1

k

) 1−ρ
ρ

(49)

dj(p, b) = b
v

1
1−ρ
i p

1
ρ−1

i∑n
k=1 v

1
1−ρ
k p

ρ
ρ−1

k

∀j ∈ [m] (50)

e(p, ν) = ν

(
n∑
k=1

v
1

1−ρ
k p

ρ
ρ−1

k

) ρ−1
ρ

(51)

hj(p, ν) = ν

(
n∑
k=1

v
1

1−ρ
k p

ρ
ρ−1

k

) ρ−1
ρ

v
1

1−ρ
i p

1
ρ−1

i∑n
k=1 v

1
1−ρ
k p

ρ
ρ−1

k

∀j ∈ [m] (52)

De�nition 3.17 (Quasilinear Utility). A quasilinear utility is a utility function of the following form:

u (x) = αx1 + θ (x2, . . . , xn) (53)

where θ is an arbitrary function and α ≥ 0. Unless otherwise noted, when talking about quasilinear utilities in the
literature, we refer utility functions of the following form which conforms with the general quasilinear form:

u (x;p) =
n∑

1=1

xj (vj − pj) (54)

where pj is the price of the jth good.

Note that quasilinear utilities are a�ne and not strictly convex. As a result, the Marshallian demand and
Hicksian demand is not unique for quasilinear utilities. This means that we do not have closed form solutions for
those quantities, however, since the indirect utility and expenditure function’s output are singleton valued, we have
closed form solutions for those:

Theorem 3.18 (Quasilinear Utility). Let u : Rm → R be of the form of eq. (54). Then the following holds:

vi(p, b) = max

{
1,max

j∈[m]

(
vj
pj

)}
b (55)

ei(p, ν) = min
j∈[m]

(
pj
vj

)
ν (56)

De�nition 3.19 (Stone-Geary Utility). Stone-Geary Utilities represent preferences over goods that in-between be-
tween perfect substitutes and perfect complements and that are not homothetic. That is, under Stone-Geary utilities a
buyer prefers a �xed bundle up to a subsistence level, and after that level the buyer prefers bundle of goods that are
balanced to bundles of goods that are extreme. Mathematically, Stone-Geary utilities are de�ned as:

u(x) =
m∏
j=1

(xj − wj)vj (57)

where
∑m

j=1 vj = 1.
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Theorem 3.20 (Stone-Geary Utility). Let u : Rm → R be of the form of de�nition 3.19. Then the following holds:

v(p, b) =
m∏
j=1

vj
(
b −

∑m
j=1wkpk

)
pj

vj

(58)

dj(p, b) = wj + vj
bi −

∑m
j=1wjpj

pj
∀j ∈ [m] (59)

e(p, ν) = hj(p, ν) = (60)

14



4 Fisher Market Model

The Fisher market model is the �rst model of a market that proves that a competitive equilibrium exists in a
market, that is, there exists prices and allocation of goods that maximize the utility of buyers and clears the market.
In other words, the �sher market proves that in a market prices exist such that the supply is equal to demand. It
was introduce by Irving Fisher in the 1870s who provided a proof of equilibrium existence via Hydraulic Machine
[5]!

4.1 Model

A Fisher market consists of:

1. Finite set of n heterogeneous buyers.

2. Finite set of m heterogeneous goods.

3. Each buyer i ∈ [n] is characterized by:

(a) a budget bi ∈ R.

(b) a utility function, ui : Rm
+ → R, giving the utility that buyer i derives from each bundle of goods.

4. WLOG, we assume that there is only one unit of each good j ∈ [m]. The results/solutions we provide in this
section can be applied to the more general settings in which the number of copies of each good is di�erent
than 1.

A Fisher market is a tuple (n,m,U, b). When clear from context, we simply denote (U, b).

4.2 Model Outcome

An allocation X ∈ Rn×m
+ is a map from goods to buyers, represented as a matrix, s.t. xij ≥ 0 denotes the

amount of good j ∈ [m] allocated to buyer i ∈ [n]. When utility function U belong to the same class, we refer to
the Fisher market by the class of utility functions, e.g., if U is a set of linear utility functions (U, b) is a linear Fisher
market.

De�nition 4.1 (Feasible allocation). An allocation is said to be feasible if no more than 1 unit of a good j ∈ [m] is
allocated in total, across all buyers,

∑
i∈[n]

xij ≤ 1

Goods are assigned prices p ∈ Rm
+ . Note that prices are anonymous, in that all copies of good j are assigned

the same price pj . An outcome is a pair (X,p) ∈ Rn×m
+ × Rm

+ consisting of an allocation and prices respectively.

For any outcome (X,p), we de�ne the demand for good j ∈ [m] as
n∑
i=1

xij and the supply of good j as 1 (since

we assumed that there is 1 unit of each good).

De�nition 4.2 (Utility Maximization). An outcome (X∗, p∗) is utility maximizing if no buyer would prefer a
di�erent feasible allocation of goods than theirs, at the outcome’s prices, that is:

∀i ∈ [n],x∗i ,∈ arg max
x:x·p≤bi

ui(xi). (61)
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De�nition 4.3 (Market Clearance). An outcome (X,p) is market clearing if the demand of any goods for which
the price is greater than 0 is equal to its supply and for goods which are priced at 0 its demand is less than or equal to
its supply, that is:

pj > 0 =⇒
∑
i∈[n]

xij = 1 and pj = 0 =⇒
∑
i∈[n]

xij ≤ 1 ∀j ∈ [m] (62)

or equivalently

∑
j∈[m]

pj(
∑
i∈[n]

xij − 1) = 0 and ∀j ∈ [m]
∑
i∈[n]

xij ≤ 1 (63)

The last condition, i.e.,
∑

j∈[m] pj(
∑

i∈[n] xij − 1) = 0 and ∀j ∈ [m],
∑

i∈[n] xij ≤ 1, are respectively called
Walras’ law and the feasibility conditions.

De�nition 4.4 (Walrasian/Competitive Equilibrium). An outcome is anCompetitive (orWalrasian) equilibrium
if it is utility maximizing and market clearing.

The existence of a Walrasian equilibrium for any continuous, concave utility function can be shown through
the use of Sperner’s lemma4 (or alternatively by Brouwer’s �xed point theorem). Sperner’s lemma is a combinato-
rial analog of Brouwer’s �xed point theorem, which posits the existence of a �xed of a function in a very general
setting. This proof however is non-constructive in that we cannot use it to compute an equilibrium outcome of the
Fisher market. We will provide a convex program to compute an equilibrium for Fisher Markets with continuous,
concave, and homogeneous (CCH) utility functions. This also is a constructive proof of the existence of an equi-
librium for buyers with preferences represented by CCH utility functions since the convex program is guaranteed
to have an optimal value. We refer to Fisher markets consisting of buyers with preferences represented by CCH
utilities as homothetic Fisher markets.

4.3 Computing Fisher Market Walrasian Equilibria

Before introducing the Eisenberg-Gale convex program which provides an equilibrium solution for homothetic
Fisher markets, we have to prove the following result due to Euler:

Before completing the proof, we need to prove one more theorem.

Theorem 4.5 (Euler’s Theorem). Let f : Rn
+ → R be a homogeneous function of degree k that is continuous and

di�erentiable on Rn
>0, then the following holds:

n∑
i=1

∂

∂xi
f(x)xi = kf(x) (64)

Proof. Assume that f is a homogeneous function of degree k. Let x ∈ Rn
>0. De�ne g : (0,∞)→ R such that:

g(λ) = f(λx)− λkf(x) (65)

4https://en.wikipedia.org/wiki/Fisher_market#cite_note-3
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Due to f being homogeneous, this function has a value of 0 for its entire domain. This implies that its derivative
is also 0 for its domain:

g′(λ) = 0 (66)

Using the chain rule, we also know that the derivative of g can also be calculated as:

g′(λ) =
n∑
i=1

∂

∂xi
f(x)xi − kf(x) (67)

Using (66) and setting λ = 0, we then get:

n∑
i=1

∂

∂xi
f(x)xi = kf(x) (68)

Theorem 4.6 (Eisenberg-Gale Convex Program). Let (n,m,U, b) be a homothetic Fisher market, i.e., U is a set
of CCH utility functions, then the primal of following program computes equilibrium allocationsX∗:

Primal

max
X

n∑
i=1

bi log (ui (xi)) (69)

∀j ∈ [m],
n∑
i=1

xij ≤ 1 (70)

∀i ∈ [n], j ∈ [m] xij ≥ 0 (71)

Dual

min
p

∑
j∈[m]

pj +
∑
i∈[n]

bi log (vi(p, bi)) (72)

∀j ∈ [m] pj ≥ 0 (73)

where vi is the indirect utility function associated with ui.

Proof. Without loss of generality, assume that the degree of the utility function is k = 1. This does not lose the
generality of our result since we can transform any homogeneous function u(x) of degree k, to a homogeneous
function of degree 1 using the monotonically non-decreasing transformation u 7→ k

√
u. This allows us to conserve

all properties of the utility function, more speci�caly the preference relations between goods by theorem 2.7. Firstly,
note that since the utilities are concave and the logarithm function is a concave function the objective function is
also concave. Furthermore, as the constraints are all a�ne, the program we propose is feasible and bounded. We
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then write down the the Lagrangian L for this convex program, using slack variables ∀j ∈ [m], pj ≥ 0 and
∀j ∈ [m], i ∈ [n], λij :

L(X,p,λ) =
n∑
i=1

−bi log(ui (xi)) +
m∑
j=1

pj

(
n∑
i=1

xij − 1

)
+

m∑
j=1

n∑
i=1

λij (−xij) (74)

Any optimal solution of a convex program is guaranteed to satisfy a series of conditions called the Karush–Kuhn–Tucker
(KKT) conditions.5. We will now argue that a saddle point (X∗,p∗)6 of the Lagrangian L constitute a Walrasian
equilibrium of the Fisher market (U, b). From the complementary slackness condition, we have the following two
conditions: ∑

j∈[m]

p∗j
(
x∗ij − 1

)
= 0 (75)

∑
i∈[n]

∑
j∈[m]

λ∗ijx
∗
ij = 0 (76)

Combining eq. (75) with eq. (100), we get that (X∗,p∗) satis�es market clearance since these two conditions are
Walras’ law and feasibility respectively, i.e., the de�nition of market clearance.
From the stationarity conditions, we get:

∂L

∂xij
=
−bi
ui(x∗i )

[
∂ui
∂xij

]
xi=x∗i

+ p∗j − λ∗ij = 0 (77)

We reorganize eq. (77) to prove that consumers do not spend more than their budget:

p∗j =
bi

ui(x∗i )

[
∂ui
∂xij

]
xi=x∗i

+ λ∗ij (78)

If xij > 0, by eq. (76) we know that λij = 0 which gives us:

p∗j =
bi

ui(x∗i )

[
∂ui
∂xij

]
xi=x∗i

(79)

Multiplying both side by xij , we obtain:

p∗jx
∗
ij =

bix
∗
ij

ui(x∗i )

[
∂ui
∂xij

]
xi=x∗i

(80)

Summing up both sides across all goods, we obtain:
5More background on this can be found here
6We ignore the slack variable µλ∗ that normally would be part of the saddle point since they do not play a role in the Fisher market

outcome.
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m∑
j=1

p∗jx
∗
ij = bi

m∑
j=1

x∗ij
ui(x∗i )

[
∂ui
∂xij

]
xi=x∗i

(81)

m∑
j=1

p∗jx
∗
ij = bi

m∑
j=1

x∗ij
ui(x∗i )

[
∂ui
∂xij

]
xi=x∗i

(82)

m∑
j=1

p∗jx
∗
ij =

bi
ui(x∗i )

m∑
j=1

[
∂ui
∂xij

]
xi=x∗i

x∗ij (83)

(84)

Using Euler’s theorem with k = 1 (since by our assumption the utility functions are homogeneous of degree 1) we
get:

m∑
j=1

p∗jx
∗
ij =

bi
ui(x∗i )

m∑
j=1

[
∂ui
∂xij

]
xi=x∗i

x∗ij (85)

m∑
j=1

p∗jx
∗
ij =

bi
ui(x∗i )

ui(x
∗
i ) (86)

m∑
j=1

p∗jx
∗
ij = bi (87)

Notice that the left hand side of this expression is exactly the spending of any buyer i ∈ [n] at the outcome (X∗,p∗).
This result implies that consumers are not spending more than their budget.

We will now show that (X∗,p∗) is utility maximizing. Going back to eq. (77), we have:

∂L

∂xij
=
−bi
ui(x∗i )

[
∂ui
∂xij

]
xi=x∗i

+ p∗j − λ∗ij = 0 (88)

If xij > 0, by eq. (76) we know that λij = 0 which gives us:

p∗j =
bi

ui(x∗i )

[
∂ui
∂xij

]
xi=x∗i

(89)

ui(x
∗
i )

bi
=

[
∂ui
∂xij

]
xi=x∗i

p∗j
(90)

The last condition is exactly the equimarginal principle, theorem 3.4, hence (X∗,p∗) is utility maximizing.
Furthermore, we can also �nd the dual of the program we proposed by simply taking the maximum of the

Lagrangian over all allocations which gives:

Dual Objective

max
X∈Rn×m+

L(X,p, λ) =
∑
j∈[m]

pj +
∑
i∈[n]

bi log

(
max

xi≥0:xi·p≤bi
ui

)
(91)

=
∑
j∈[m]

pj +
∑
i∈[n]

bi log (vi(p, bi)) (92)

The feasible set of the dual is simply Rm which essentially makes the problem unconstrained.
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From the above theorem and using closed form solutions of the indirect utility function for di�erent utility
functions, we can obtain the following corollaries. Note that the duals are slightly di�erent than that proposed in
theorem 4.6 to be consistent with the way these programs are presented in the literature.

Corollary 4.7 (Linear Fisher Market). Let (U, b) be a linear Fisher market, i.e.,U is a set of linear utility functions.
Then, the equilibrium of the Fisher market (U, b) is given by:

Primal

max
X

n∑
i=1

bi log

∑
j∈[m]

vijxij

 (93)

∀j ∈ [m],
n∑
i=1

xij ≤ 1 (94)

∀i ∈ [n], j ∈ [m] xij ≥ 0 (95)

Dual

min
p

∑
j∈[m]

pj −
∑
i∈[n]

bi log

(
min
j∈[m]

(
pj
vj

))
(96)

∀j ∈ [m] pj ≥ 0 (97)

Corollary 4.8 (Leontief Fisher Market). Let (U, b) be a Leontief Fisher market, i.e., U is a set of linear utility
functions. Then, the equilibrium of the Fisher market (U, b) is given by:

Primal

max
X

n∑
i=1

bi log (ui) (98)

∀i ∈ [n], j ∈ [m] ui ≤
xij
vij

(99)

∀j ∈ [m],
n∑
i=1

xij ≤ 1 (100)

∀i ∈ [n], j ∈ [m] xij ≥ 0 (101)

Dual

min
p

∑
j∈[m]

pj −
∑
i∈[n]

bi log

∑
j∈[m]

pjvij

 (102)

∀j ∈ [m] pj ≥ 0 (103)

We note that for Cobb-Douglas Fisher markets the equilibrium outcome (X∗,p∗) can be written in closed
form.
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Theorem 4.9 (Cobb-Douglas Fisher Market Equilibrium). Let (U, b) be a Cobb-Douglas Fisher market, i.e., U is
a set of Cobb-Douglas utility functions. Then, the equilibrium of the Fisher market (U, b) is given by:

x∗ij =
vijbi∑

k∈[n] vkjbk
∀j ∈ [m], i ∈ [n] (104)

p∗j =
∑
i∈[n]

vijbi ∀j ∈ [m] (105)

There are two proof one by simply solving the Eisenberg-Gale program by hand to obtain a closed form soluton
and the other as follows:

Proof. We assume that the valuations of the buyers are normalized such that
∑

j∈[m] vij = 1 Recall that the demand
of buyer i for good j, Di(p) at given prices p for Cobb-Douglas utilities is:

Di
j(p) =

vijbi
pj

(106)

Summing up both sides across all buyer, we get:

∑
i∈[n]

Di
j(p) =

∑
i∈[n]

vijbi
pj

(107)

∑
i∈[n]

Di
j(p) =

1

pj

∑
i∈[n]

vijbi (108)

The left hand side of this expression is the demand for good j. Since in a �sher market there is one unit of
each good, we can set the demand equal to 1 and solve for the equilibrium price of good j, p∗j :

1 =
1

p∗j

∑
i∈[n]

vijbi (109)

p∗j =
∑
i∈[n]

vijbi (110)

(111)

Finally, by substituting our formula for the equilibrium price of good j into the demand set formula, we get
the equilibrium allocation x∗ij of buyer i for good j:

x∗ij =
vijbi∑

k∈[n] vkjbk
(112)

Note that this closed form solutions assumes that the valuations are of the following form, ∀i ∈ [n],
∑

j∈[m] vij =

1 and that there is only one unit of each good in the market.

Although the Eisenberg-Gale program is known to provide solutions for Fisher markets with CCH utility func-
tions, it does not provide a solution for Fisher markets with quasilinear utility functions, even though quasilinear
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utilities are homogeneous. The reason why the Eisenberg-Gale program fails in this case is because quasilinear
utilities are parameterized by prices, which renders the Eisenberg-Gale program’s objective function ill-de�ned.7

This di�culty arises because historically, quasilinear utilities (and more broadly all utility functions param-
eterized by prices) were not seen as well-de�ned utility functions, since they attribute value to money, which
intrinsically has no value, a controversy known as Hahn’s problem [13] within mainstream microeconomics. A
remedy to this problem was brought forward by Devanur [10], who provided a partial answer by noticing that
Fisher markets with quasilinear utilities can be solved via Shmyrev’s program [16]. The primal of Shmyrev’s pro-
gram captures the equilibrium allocationsX∗ while the dual captures the equilibrium prices p∗ os any quasilinear
Fisher market (U, b):

Theorem 4.10 (Devanur’s Program). Let (U, b) be a quasilinear Fisher market, i.e., U is a set of functions of
the form ui(xi;vi,p) =

∑
j∈[m] (vij − pj), then the tuple of optimal solutions (X∗,p∗) for the primal and dual

respectively, comprise of a Walrasian equilibrium for the Fisher market (U, b).

Primal

max
X,u,v

n∑
i=1

bi log(ui)− vi (113)

∀i ∈ [n], ui ≤
∑
j∈[m]

vijxij + vi (114)

∀i ∈ [n],
∑
j∈[m]

xij ≤ 1 (115)

∀i ∈ [n], j ∈ [m] xij, vi ≥ 0 (116)

Dual

min
p,β

m∑
j=1

pj −
n∑
i=1

bi log(βi) (117)

∀i ∈ [n], j ∈ [m] pj ≥ vijβi (118)
∀i ∈ [n], βi ≤ 1 (119)

The proof is skipped as it is similar to that of theorem 4.6.

4.4 First and Second Welfare Theorems for Fisher Market Walrasian Equilibria

One might ask why Walrasian equilibria are important and that question can be answered by the �rst and
second Welfare theorem of economics. Namely, the Walrasian equilbirium allocations turn out to be e�cient and
for any pareto-optimal allocation, one can calculate prices to obtain a Walrasian equilibrium. The importance of
the �rst second welfare theorems is that they essentially support Adam Smith’s invisible hand hypothesis. That
is, there exists an equilibrium, namely the Walrasian one, that is e�cient assuming self-interested, i.e., rational,
agents. We �rst recall the de�nition of Pareto-optimal.

7It is ill-de�ned in the sense that quasilinear utility functions include a price variable, while the convex programming solution to UMP
(i.e., the Eisenberg-Gale program) does not; it concerns only utilities, allocations, and budgets.
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De�nition 4.11 (Pareto-Optimal). An allocation X is said to be Pareto-optimal if there exists no other feasible al-
location that makes some buyer better-o� without making any other buyers worse-o�, that is, let X be any feasible
allocation then an allocationX∗ is Pareto-optimal if:

∃i ∈ [n], ui(xi) > ui(x
∗
i ) =⇒ ∃k ∈ [n], ui(x

∗
i ) > ui(xi) (120)

The �rst welfare theorem states that any Walrasian equilibrium allocation is Pareto-optimal.

Theorem 4.12 (First Welfare Theorem - Fisher Market). If (X∗,p∗) is a Walrasian equilibrium then it is also
pareto-optimal.

Proof. Let (X∗,p∗) be a Walrasian equilibrium. By way of contradiction, assume that there exists another outcome
(X,p) for which we have ∀i ∈ [n], ui(xi) ≥ ui(x

∗
i ) and ∃i ∈ [n], ui(xi) > ui(x

∗
i ). Since utility functions are

non-satiated and Walrasian equilibria are utility maximizing, then we must have that ∀i ∈ [n], p ·xi ≥ p ·x∗i and
∃i ∈ [n], p ·xi > p ·x∗i . That is in order to achieve a higher utility with another allocation that is not a Walrasian
equilibrium, buyers need to be on an indi�erence curve that intersects with a budget constraint curve further way
from the origin. Since at a Walrasian equilibrium buyers already were spending their entire budget, any outcome
that pareto-dominates the Walrasian Equilibrium outcome (X∗,p∗) must be infeasible.

The second welfare theorem states that for an Pareto-optimal allocation, we can compute prices such as to
obtain a Walrasian equilibrium.

Theorem 4.13 (Second Welfare Theorem - Fisher Market). Let (U, b) be a Fisher Market, ifX∗ is pareto-optimal
allocation for (U, b) then there exists a price vector p∗ such that (X∗,p∗) is a Walrasian equilibrium. That is, any
Pareto-optimal outcome can be represented as Walrasian outcome.

Skipping proof as it is relatively involved.
Note that the second welfare theorem does not say that for any Fisher market, every Pareto optimal allocation

is a Walrasian equilibrium. Rather, it says that for any Pareto optimal allocation of a Fisher Market there is a way
to re-distribute resources through prices that makes the allocation a Walrasian equilibrium outcome.

4.5 Stability of Walrasian Equilibria in Fisher Markets

As we have shown, the �rst and second welfare theorem show that market equilibria are e�cient, however,
this is only under the assumption that markets reach such equilibria. The question of whether if there exist real-
world-like market dynamics/processes that lead to price adjustments that lead to market equilibria is known as the
is stability question.

Although programs such the Eisenberg-Gale program allow us to compute Fisher market equilibria, via in-
terior point methods for instance, these computation techniques cannot be seen as market processes as they are
centralized and have no economic interpretation. As a result, it is crucial for economists and computer scientists
alike to come up with distributed economic processes that reach equilibrium and that immitate real-world phe-
nomena. The question could be argued to date back to Léon Walras, a French economist, who in 1874 conjectured
that a natural price-adjustment process he called tâtonnement, an algorithm representative of market behavior,
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would converge to equilibrium prices [17]. An early positive result in this vein was provided by Arrow, Block and
Hurwicz, who showed that a continuous version of tâtonnement converges in markets with an aggregate demand
function that satis�es the weak gross substitutes (WGS) property [3].

Another reason to be interested in the question of stability is an "engineering" one. For instance, the problem
of allocating bandwidth on a network can be solved in a decentralized manner using tâtonnement-like protocols.
Additionally, with the rise of blockchain decentralized �nance technology, one can imagine that eventually central-
ized market places might get replaced with exchange protocols, e.g. tâtonement, that are guaranteed to be optimal
and that eliminate middle-men, i.e., market place managers.

Going back to tâtonnement in Fisher markets, more recently, Cole and Fleischer, and Cheung et al. showed
the fast convergence of tâtonnement in Fisher markets where the buyers’ utility functions satisfy the weak gross
substitutes and the constant elasticity of substitution (CES) properties respectively, a subset of the class of CCH
utility functions [6, 7, 8]. Although tâtonnement has also been criticized for being a centralized process, which
therefore cannot suitably model real-world markets, Cole and Fleischer argued for the plausibility of tâtonnement
by proving that it is an abstraction for in-market processes in a real-world-like model called the ongoing market
model [7, 8]. Additionally, the plausibility of tâtonnement as a natural price-adjustment process has been supported
by Gillen et al., who demonstrated the predictive accuracy of tâtonnement in o�-equilibrium trade settings [12].
We summarize the convergence results for tâtonnement in Fisher markets in �g. 1.

CES

(1−Θ(1))t

Leontief

O(1/t)

CSCH

O(1/t)

WGS

(1−Θ(1))t

Space of Fisher markets

CES with ρ > 0

Figure 1: The convergence rates of tâtonnement for di�erent classes of utility functions. We color previous contri-
butions blue, and our contributions red, i.e., we study Fisher markets for buyers with CSCH utilities. We note that
the convergence rate for CES and WGS markets does not apply to markets where buyers have linear utilities.

The tâtonnement process can be seen as a continuous or a discrete process. Let G : Rm → Rm be a monotone
function. The excess demand, z : Rm ⇒ Rm, in a Fisher market (U, b) is de�ned as the di�erence between the
demand for each good and the supply of each good, that is:

z(p) =
∑
i∈[n]

di(p, bi)− 1m (121)

where 1m is the vector of ones of size m and
∑

i∈[n] di(p, bi)− 1m =
{
x− 1m|x ∈

∑
i∈[n] di(p, bi)

}
.

De�nition 4.14 (Continuous Tâtonnement). The continuous tâtonnement process is given by the dyanmical system
with phase space Rm

+ and evolution function:

ṗ = G ◦ z(p(t)) (122)
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De�nition 4.15 (Discrete Tâtonnement). The discrete tâtonnement process is given by the dynamical system with
phase space Rm and evolution function:

p(t+ 1) = p(t) +G ◦ z(p(t)) (123)

25



5 The Pari-Mutuel Betting Model

We now digress to introduce an interesting connection between Fisher markets and a betting market model
name the Pari-Mutual betting model �rst rigorously analyzed by Edmund Eisenberg and David Gale in 1959. We
note that Pari-mutuel model and the Fisher market were both invented around the 1970s, but the Eisenberg-Gale
program was �rst proposed by Eisenberg and Gale to solve for an equilibrium of the Pari-Mutuel betting model.
In 1867, Spanish entrepreneur Joseph Oller invented parimutuel betting, a form of wagering that is still popular
today and handles billions of waged dollars every year! The pari-mutuel model is a system of betting in which all
bets are placed on a set of possible exclusive outcomes. Once the outcome is determined the bettors who bet on the
winning outcome split the total amount wagered in proportion to the size of their wagers. To explain this system
better we will consider the application of pari-mutuel betting to betting in horse races.

In this setting, each bettor bets on a horse. The house collects the bets and pays the participants that bet on
the winning horse the total amount of money collected multiplied by the proportion of each winner’s bet in the
total amount bet on the winning horse.

The �rst principle of the pari-mutuel model is that you should not try to bet on the horse that has the highest
chance of winning, but on the horse that has the best pay out ratio relative to your belief of its chance of winning.
The reason for this is simply that as more people bet on the same horse the likelihood of any bettor making a pro�t
goes to 0. To better illustrate this principle, consider the trivial case when every agent bets all their money on the
same horse. If that horse ends up winning, every bettor gets back the amount of money he/she bet but makes no
pro�t whatsoever. Since, the goal of betting is to make a pro�t, a bettor is better o� guessing a winning horse on
which only a small amount of money is bet.

5.1 Model

We now introduce the mathematical model proposed by Edmund Eisenberg and David Gale8 [11]. The Pari-
Mutuel betting model consists of:

• n horses labelled, H1, . . . , Hn

• m bettors labelled B1, . . . , Bm

• Each bettor Bi,∀i ∈ [m], has a budget bi. We assume that the sum of the budgets is equal to one, i.e.,∑m
i=1 bi = 1

• Matrix of subjective opinions of winning, where each entry (i, j)th is the prior that each bettor Bi has on the
probability of winning of horse Hj such that P = [pij]i∈[m],j∈[n]

• WLOG, we assume that each horse i has at least one subjective opinion of winning that is strictly positive,
i.e. pij > 0. Otherwise, we could simply not consider that horse in the betting process because no one will
bet money on it (since no bettor believes that the horse will win).

5.2 Outcome of the Model

Each bettor Bi bets part of their budget on any horse Hj . Let β = [βij]i∈[m],j∈[n] be the bet allocation matrix
s.t. βij ≥ 0 denotes the amount that bettor Bi bet on horse Hj . After the bets have been made, it is possible to

8Fun fact: Gale was a Professor in the applied math department here at Brown!
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determine an aggregation of all bettors’ opinions to determine the aggregated winning probability of each horse.
Let π = (π1, π2, . . . , πn)T be the �nal track probabilities vector which represents the probability of each horse
winning based on the bets have been made.9 A pari-mutuel outcome is a tuple (β,π) consisting of bet allocations
and �nal track probabilities.

Any pari-mutuel outcome must satisfy the budget relation:
∑m

j=1 βij ≤ bi (i.e., the sum of the bets of each
bettor is equal to their budget) and the pari-mutuel condition:

∑
i βij = πj (i.e., the sum of the bets on each

horse is equal to their �nal track probability). The pari-mutuel condition simply arithmetizes the main principle
behind the model which is that the probability of a horse winning is proportional to the amount bet on that horse.
Note that, since we assumed that the sum of all of the budgets is equal to 1, in this case the proportonality constant
is exactly 1.

As stated before, the goal of each bettor is to bet on the horse that has the best pay out ratio relative to their
belief of the horse’s winning odds. Since the bettors make a bigger pro�t when the winning horse has less money
bet on it, the goal of each bettor can be modelled as betting on the horses with the highest ratio of subjective
probability of winning to �nal track probability10. A pari-mutuel outcome (β∗,π∗) in which the bettors bet in this
manner is said to be expectationmaximizing. We arithmetize the expectation maximization condition as follows:

if µi = max
s

pis
π∗s

and β∗ij > 0, then µi =
pij
π∗j

(124)

A pari-mutuel outcome is optimal i� bettors are expectation maximizing and the outcome respects the budget
relation as well as the pari-mutuel condition.

Now, observe that the �nal track probabilities cannot be determined before the bettors have put their money
on their horses. However, bettors can also not maximize their expectation without knowing the �nal track proba-
bilities! So one question to ask is whether if an optimal outcome of the pari-mutuel model exists at all!

5.3 Optimal Solution

We now introduce the Eisenberg-Gale convex program.

max
ξ

m∑
i=1

bi log

(
n∑
j=1

pijξij

)
(125)

ξij ≥ 0 (126)
m∑
i=1

ξij = 1 (127)

The optimal output ξ̄ =
[
ξ̄ij
]
i∈[m],j∈[n] to this convex program can be used to calculate the optimal allocation

(β,π). This is also a proof of the existence an optimal allocation for the pari-mutuel problem (given that our claim
in the previous sentence is correct) since any convex program is guaranteed to have a minimum.

Theorem 5.1. Let ξ̄ be a solution of the Eisenberg-Gale program. An optimal allocation (β∗,π∗) for the pari-

9This vector of probability represents the aggregation of all bettors subjective probabilities into a unique probability vector.
10Remember that a lower �nal track probability means less money bet on a horse due to the pari-mutuel condition
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mutuel market can be calculated as:

π∗j = max
i

bipij
n∑
s=1

pisξ̄is

(128)

β∗ij = ξ̄ijπ
∗
j (129)

Proof. First, we claim the following, which we use in the rest of the proof:

if ξ̄ij > 0 then πj =
bipij

n∑
s=1

pisξ̄is

(130)

To see this, suppose that this claim is false and that for some i, j, ξ̄ij > 0 and that πj > bipij
n∑
s=1

pisξ̄is

. By de�nition

of πj , we then have a ξ̄kj for some k which gives πj =
bkpkj
n∑
s=1

pksξ̄ks

>
bipij
n∑
s=1

pisξ̄is

. This then implies that we could

decrease ξ̄ij and increase ξ̄kj to increase the objective function of the Eisenberg-Gale program. This, however, is a
contradiction since ξ̄ maximizes the Eisenberg-Gale program. In other words, this fact simply comes from the fact
that ξ̄ maximizes the Eisenberg-Gale program.

Budget constraint condition: Combining conditions (129) and (130), we get:

β∗ij = ξ̄ijπ
∗
j (131)

= ξ̄ij
bipij

n∑
s=1

pisξ̄is

(132)

= bi
pij ξ̄ij
n∑
s=1

pisξ̄is

(133)

Summing the above on j, we get:
∑n

j=1 β
∗
ij = bi

n∑
j=1

pij ξ̄ij

n∑
s=1

pisξ̄is

= bi. This con�rms the budget constraint condition.

Pari-mutuel Condition: By constraint (127), we know that
∑m

i=1 ξ̄ij = 1. Hence, summing up β∗ij on i we
recover the �nal track probabilities, i.e.,

∑m
i=1 β

∗
ij =

∑m
i=1 ξ̄ijπ

∗
j = π∗j . This con�rms that the allocation respects

the pari-mutuel condition.
Expectation Maximization
From (128), we know that:

π∗j = max
i

bipij
n∑
s=1

pisξ̄is

(134)

1

πj
= min

i

n∑
s=1

pisξ̄is

bipij
(135)

pij
πj

= min
i

n∑
s=1

pisξ̄is

bi
(136)

pij
πj
≤

n∑
s=1

pisξ̄is

bi
(137)
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Recall from (124) that:

µi = max
s

pis
π∗s

(138)

Substituting π∗s with the expression from (128), we get:

µi = max
s
pis

n∑
k=1

pikξ̄ik

bipis
(139)

= max
s

n∑
k=1

pikξ̄ik

bi
(140)

=

n∑
k=1

pikξ̄ik

bi
(141)

Since we assumed that there exists at least one entry in each column of P that is strictly positive, we know
that each πj is positive11 Then, combining facts (129), (140), (137) and (130), we get exactly (124).

5.4 Connecting the Pari-Mutuel Model and the Fisher Market

We will now assume that the utility functions of the buyers are linear to provide an interesting connection
between the optimal outcome of the Pari-Mutuel model and the Fisher Market. Let each buyer have preferences
over goods represented as a vector of values vi ∈ Rm, Linear utilities are de�ned as:

∀i ∈ [n], ui(xi) =
∑
jin[m]

vijxij (142)

It turns out that any equilibrium allocation of the �sher market is captured by the solution to the Eisenberg-
Gale program. The corespondance between the variables in the both models is given in the table below:

Pari-Mutuel Fisher

bi (bettor budget) Bi (buyer budget)

ξij of Bi’s bet in πj) Xij (allocation of good j to buyer i)

pij (subjective probability) vij (valuation)

πj (�nal track probability) pj (price)

βij (bet of Bi on Hj) Xijpj (s pending of buyer i on good j)

This equivalence allows us to use the Eisenberg-Gale program to solve linear Fisher markets. It turns out that one
can actually generalize the Eisenberg-Gale program to all homothetic Fisher markets.

11Observe the objective function of the Eisenberg-Gale program to convince yourself about this fact.
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6 Arrow-Debreu Model of a Competitive Economy

The general equilibrium model of a competitive economy, also known as the Arrow-Debreu model, establishes
the existence of a general equilibrium, that is prices, consumption and production that maximize �rms pro�ts,
consumers’ utilities and clears the market [2].

6.1 Model

An Arrow-Debreu model (of a competitive economy) consists of:

1. Finite set of l commodities (this can include raw goods, intermediate goods and labor)

2. Finite set of n production units (i.e., �rms). Each �rm j ∈ [n] has:

• a set of possible productions Yj . An element yj ∈ Yj is a vector in Rl. Positive elements of this vector
are outputs while negative elements are inputs.

3. Finite set of m consumption units (i.e., agents/consumers). Every agent i ∈ [m] has:

• a set of possible consumptionsXi. An element xi ∈ Xj is a vector in Rl. Positive elements of this vector
are commodities consumed while negative elements are the labor service that a consumer provides. We
asumme that the labor that a consumer can provide is upperbounded.

• a contractual claim to a share of the pro�ts of each �rm αi = (αi1, . . . , αin)

• an endowment of commodities ei = (ei1, . . . , eil)

• a utility function ui : Rl
+ → R that gives that the utility that an agent derives from a bundle of com-

modities.

6.2 Model Outcome

The price space is P =
{
p | ph ≥ 0,

∑l
h=1 ph = 1

}
. Commodities are assigned prices p ∈ P . An outcome

of the model is a tuple (y1, . . . ,yn,x1, . . . ,xm,p) ∈ Y1 × · · · × Yn ×X1 × · · · ×Xm × P .
An outcome (y1, . . . ,yn,x1, . . . ,xm,p) ∈ Y1 × · · · × Yn ×X1 × · · · ×Xm × P is feasible i� the value of the

consumption of agents is less than or equal to their income, i.e., ∀i ∈ [m], xi · p ≤ ei · p+
∑n

j=1 αijyj · p.

6.3 Equilibrium

An outcome (y∗1, . . . ,y
∗
n,x

∗
1, . . . ,x

∗
m,p

∗) ∈ Y1 × · · · × Yn ×X1 × · · · ×Xm × P is an equilibrium i�:

1. Firms maximizes pro�t:
∀j ∈ [n], y∗j maximizes p∗ · yj over Yj

2. Consumers maximize utility:
∀i ∈ [m] x∗i maximizes ui(xi;vi) over the set

{
xi | xi ∈ Xi xi · p∗ ≤ ei · p∗ +

∑n
j=1 αijy

∗
j · p∗

}
3. The markets clear and goods that are not demanded are priced at 0:∑m

i=1 x
∗
i −

∑[n]
j=1 y

∗
j −

∑m
i=1 ei ≤ 0, and p∗ ·

(∑m
i=1 x

∗
i −

∑[n]
j=1 y

∗
j −

∑m
i=1 ei

)
= 0
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Note that for the last condition, we need both mathematical statements since the �rst condition coupled with the
second one ensures that if a good is under-demanded that it is priced at 0. (if it confuses you, the second part is
more of a technical statement in a way because we assume that the prices cannot be negative) We now present the
Arrow-Debreu Theorem due to Nobel prize laureate economists Kenneth J. Arrow and Gerard Debreu.

Theorem 6.1 (The Arrow-Debreu Theorem I). Suppose that the following conditions are satis�ed:

1. Xi is closed and convex for all i ∈ [m]

2. Yj is closed and convex for all j ∈ [n]

3. All agents have a consumption that is stricly less than their endowment, i.e., for all agents i ∈ [m], ∃xi ∈
Xi, xi < ei

4. ui is continuous

5. ui is quasi-concave, i.e., ∀λ ∈ (0, 1), ui(λx+ (1− λ)y) ≥ min {ui(x), ui(y)} ,

6. ui is non-satiated, i.e., ∀x ∈ Rl, ε > 0, ∃y ∈
{
y|y ∈ Rl, ||y − x|| ≤ ε

}
, ui(y) > ui(x)

Then an equilibrium outcome of the Arrow-Debreu Model exists

Note that when X = Rl
+ (which is both an open and closed), then assumption 3 reduces to ∀i ∈ [m], h ∈

[l], eih > 0.

Proof Sketch. We provide a sketch of the proof as it is a very involved proof.
De�ne the following optimization program whose output is the utility maximizing and budget constrained

consumption bundle of consumer i (i.e., the demand of consumer i):

Di(p) =


arg maxxi ui(xi)

xi · p ≤ ei · p+
∑n

j=1 αijyj · p

xi ∈ Xi


(143)

where yj is chosen arbitrarily.
By the assumptions of the theorem ui is continuous, quasi-concave, and non-satiated and Xi is compact (be-

causeXi is a closed subspace ofRl), this means that the output of this program is unique for any input price vector p
(meaning that it can be considered as regular function). Furthermore, these assumptions allow us to use a theorem
called the maximum theorem that tells us that this function is continuous in its arguments (i.e., prices).

De�ne the following optimization program whose output is the pro�t maximizing production of �rm j:

Sj(p) =

 arg maxyj yj · p

yj ∈ Yj

 (144)
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By the assumptions of the theorem Yj is compact (because Y[n] is a closed subspace of Rl), since Yj is convex,
then the output of this program is unique (meaning that it can be treated like a regular function). Furthermore, by
the maximum theorem, this means that this function is continuous in its arguments (i.e., prices).

De�ne the excess demand function for the economy that returns a vector of the di�erences in the supply and
demand of each commodity:

Z(p) =
∑
i∈[m]

Di(p)−
∑
j∈[n]

Sj(p)−
∑
i∈[m]

ei (145)

Z : P → RN (146)

Now de�ne the function T : P → P , that mimics a �ctional auctioneer trying to bring the economy into an
equilibrium by adjusting the prices based on the excess demand. More speci�cally this function is calculated as:

Th(p) =
max [0, ph + γkZk(p)]∑
k∈[l] max [0, pk + γkZk(p)]

(147)

where is an arbitrary constant γk > 0.
The function T is a price adjustment function. It raises the relative price of goods in excess demand and reduces

the price of goods in excess supply while keeping the price vector on the simplex. This function is also continuous
since the demand and supply functions are continuous which implies that the excess demand function is continuous
and since the max operator preserves continuity, T must also be continuous. Since T is continuous and maps from
a convex compact set back to itself, by Brouwer’s �xed point theorem, it has a �xed point. By the de�nition of the
function this �xed point must be an equilibrium.12

Assumption 3 that every consumer has an endowment such that they could consume it and have left over
endowment to sell is a very strong one. As a result Arrow and Debreu provide a second theorem with additional
assumptions that gets rid of that assumption.

Theorem 6.2. The Arrow-Debreu Theorem II
Suppose that the following conditions are satis�ed:

Xi is closed and convex for all i ∈ [m]

1.2. Yj is closed and convex for all j ∈ [n]

3. Each agent has at least one good that they are endowed with, for which they have a consumption that does
not consume that good entirely, i.e., ∀i ∈ [m],∃h ∈ [l], xih < eih.

4. There exists a consumption for all agents such the supply of goods is strictly greater than demand. More
formally, Let X =

{
X|X =

∑
i∈i xi, where xi ∈ Xi

}
and Y =

{
y|y =

∑
j∈[n] yj, where yj ∈ Yj

}
∃X ∈ X,y ∈ Y , then ∃X ∈ X,y ∈ Y, X < y +

∑
i∈[m] ei

5. ui is continuous

12Some of the mathematical details were skipped for brevity, you can �nd more detail notes here
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6. ui is quasi-concave, i.e., ∀λ ∈ (0, 1), ui(λx+ (1− λ)y) ≥ min {ui(x), ui(y)} ,

7. ui is non-satiated, i.e., ∀x ∈ Rl, ε > 0, ∃y ∈
{
y|y ∈ Rl, ||y − x|| ≤ ε

}
, ui(y) > ui(x)

Then an equilibrium outcome of the Arrow-Debreu Model exists

7 Arrow-Debreu Exchange Economy Model

7.1 Model

An Arrow-Debreu Exchange economy model consists of:

1. Finite set of m goods.

2. Finite set of n traders (i.e., agents/consumers). Every trader i ∈ [n] has:

• a set of possible consumptions Xi ⊆ Rm
+ . We denote X =×i∈[n]Xi

• an endowment of goods ei = (ei1, . . . , eim) ∈ Rm. We denote E = (e1, . . . , en)T

• a utility function ui : Rm → R.

An instance of an Arrow-Debreu market is given by a tuple (n,m,X,U,E). When clear from context, we
abbreviate (U,E).

7.2 Walrassian/Competitive Equilibrium

An allocationX ∈ X is a map from goods to buyers, represented as a matrix, s.t. xij ≥ 0 denotes the amount
of good j ∈ [m] allocated to buyer i ∈ [n]. The price space is P =

{
p | pj ≥ 0,

∑m
j=1 pj = 1

}
. Goods are assigned

prices p ∈ P . Goods are assigned prices p ∈ P . An outcome of the model is a tuple (X,p) ∈ X × P .
An outcome (X∗,p∗) ∈ X × P is an equilibrium i�:

1. Traders maximize utility:
∀i ∈ [n] x∗i maximizes ui(xi) over the set {xi | xi ∈ Xi xi · p∗ ≤ ei · p∗}

2. The markets clear and goods that are not demanded are priced at 0:∑m
i=1 x

∗
i ≤

∑m
i=1 ei and p∗ · (

∑m
i=1 x

∗
i −

∑m
i=1 ei) = 0

Theorem 7.1 (Arrow-Debreu Exchange Theorem). Suppose that the following conditions are satis�ed:

1. Xi is closed and convex for all i ∈ [n]

2. Each agent has a consumption xi ∈ Xi that is strictly less than their endowment for all goods, i.e., eij > xij

for all i ∈ [n] and j ∈ [m].

3. ui is continuous

4. ui is quasi-concave, i.e., ∀λ ∈ (0, 1), ui(λx+ (1− λ)y) ≥ min {ui(x), ui(y)}

5. ui is locally non-satiated, i.e., ∀x ∈ Xi, ∀ε > 0, ∃y ∈ Bε(x), ui(y) > ui(x)
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Then an equilibrium outcome of the Arrow-Debreu Model exists.

Note that whenX = Rl
+ (which is both an open and closed), then assumption 3 reduces to ∀i ∈ [m], h ∈ [l], eih > 0.

The proof of the above theorem is a direct corollary as the Arrow-Debreu theorem for competitive economies since
the Arrow-Debreu Exchange model is a special case (actually a later paper proved that both models are equivalent!)
of the Arrow-Debreu Competitive Economy model and the result from the Arrow-Debreu theorem directly applies
to the exchange model.

Theorem 7.2 (The Arrow-Debreu Exchange Theorem II). Suppose that the following conditions are satis�ed:

1. Xi is closed and convex for all i ∈ [n]

2. Each consumer is endowed with at least one good for which they have a consumption that will not consume
their entire endowment of that good, i.e., ∀i ∈ [n],∃j ∈ [m],xi ∈ Xi, s.t., xij < eij .

3. There exists a consumption for all consumers such that they can consume less than the total endowment, i.e.
∃X ∈ X, s.t.

∑
i∈[n] xi <

∑
i∈[n] ei.

4. ui is continuous

5. ui is quasi-concave, i.e., ∀λ ∈ (0, 1), ui(λx+ (1− λ)y) ≥ min {ui(x), ui(y)}

6. ui is locally non-satiated, i.e., ∀x ∈ Xi, ∀ε > 0, ∃y ∈ Bε(x), ui(y) > ui(x)

Then an equilibrium outcome of the Arrow-Debreu Model exists.

7.3 Connecting Fisher Markets and Arrow-Debreu Exchange Economies

Theorem 7.3. An instance (U, b) of a Fisher market can be cast as an instance (U
′
,E) of an Arrow-Debreu

Exchange market.

Proof. We provide a reduction from an arbitrary instance of the Fisher Market to an instance of the Arrow-Debreu
Exchange Market. Let (U, b) be an instance of a Fisher Market.

We build the following Arrow-Debreu exchange market with n+ 1 consumers and m+ 1 goods. More specif-
ically, we add an (m+ 1)th commodity which is money, and a new (n+ 1)th arti�cial consumer which initially will
have all m goods, and is interested only in money.
We set the initial endowments E of the consumers in this construction of the Arrow-Debreu Exchange model as
follows:
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Consumer Commodity 1 . . . Commodity m Commodity m+ 1

1 0 . . . 0 b1

2 0 . . . 0 b2

... ... ... ... ...

n 0 . . . 0 bn

n+ 1 1 . . . 1 0

The consumption set of the consumers are set as follows:

∀i ∈ [n+ 1], Xi =

xi | ∀h ∈ [m+ 1], 0 ≤ xih ≤
∑

i∈[n+1]

eih

 (148)

The new utility functions u′ of the consumers are set as follows:

• The �rst n consumers, derive the utility given by U from the �rst m commodities and a utility of 0 for the
(m+ 1)th commodity (i.e., money), i.e., ∀i ∈ [n], u

′
i(xi) = ui(xi1, . . . ,xim)

• The (n + 1)th consumer, derives no utility from the �rst m commodities and a utility of xn+1m+1 from the
(m + 1)th commodity (i.e., money) where xn+1m+1 is the amount of money that the arti�cial consumer is
allocated, i.e., u′n+1(xn+1) = xi,m+1

We need to now show that the equilibrium prices for the �rstm goods divided by the equilibrium price of good
m + 1 in this Arrow-Debreu Exchange market correspond exactly to the equilibrium prices for the Fisher market
and the allocations of the �rst m goods correspond exactly to the equilibrium allocations for the Fisher Market.

First, we will show that for the Arrow-Debreu market that we built satis�es conditions of Arrow-Debreu’s
second theorem so that an equilibrium price vector exists.

The consumption set of the consumers contains all of its end points as it bounded below by 0 and above by the
total endowment of agents and those end points are included in the set. As a result it is a closed set. Furtheremore,
the set is convex since any convex combination of two arbitrary points in the set belongs to the set. This can be
derived by picking two arbitrary points and noticing that any convex combination of those two points will always
respect the inequality condition de�ning the set. The consumption set of all consumers includes the vector of
zeros, i.e., consumers consuming nothing. Since every consumer is endowed with the (m+ 1)th good (i.e., money),
condition 2 is also ful�lled. Furthermore, this implies that there exists a consumption vector for consumers as a
whole that is the vector of zeros. Since the supply of goods is strictly positive in the entire economy, then condition 3
is also ful�lled. Assuming that the utility functions in the Fisher market were continuous, then the utility functions
we build are also continuous. This con�rms condition 4. Assuming that the utility functions in the Fisher market
were quasi-concave, then the utility functions we build are also quasi-concave since our transformations of the
utility functions are monotonous transformations. This con�rms condition 5. Assuming that the utility function in
the Fisher market were non-satiated then they necessarily also are non-satiated in the Arrow-Debreu market for
the �rst n consumers. Furthermore, the way we built the utility function of consumer n + 1, getting more of the
(m+1)th good strictly increases his utility (i.e., his utility function is monotonic) which implies non-satiation. This
con�rms condition 6.
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Then we show that the equilibrium of the Arrow-Debreu market that we built can be used to compute the
equilibrium of the Fisher market. To do so, we show that the equilibrium prices of the Arrow-Debreu market
(U
′
, b) we built respect the utility maximization (constrained by budget) and market clearance conditions of the

Fisher market Walrasian equilibrum.
Budget constraint: Any equilibrium outcome (x∗1, . . . ,x

∗
m,p

∗) of the Arrow-Debreu model satis�es the feasili-
bity condition, i.e.:

∀i ∈ [n+ 1], x∗i · p∗ ≤ ei · p∗ (149)

For agents, 1, . . . , n, since they are only endowed with the (m+ 1)th good, this condition can be restated as:

∀i ∈ [n], x∗i · p∗ ≤ bip
∗
m+1 (150)

Now, if we divide both sides by p∗m+1, we obtain:

∀i ∈ [n],
1

p∗m+1

x∗i · p∗ ≤ bi (151)

Let pf be the equilibrium prices calculated using the equilibrium prices p∗ of the Arrow-Debreu exchange
model we built, that is, for all j = 1, . . . ,m, pfj =

p∗j
p∗m+1

. Then, the previous expression becomes:

∀i ∈ [n], x∗i · pf ≤ bi (152)

This con�rms that the way we set prices satis�es the budget constraint of consumers in the Fisher market.
Utility Maximization: Firstly, any Arrow-Debreu exchange equilibrium maximizes the utility of the traders.

This means that the allocation of goods must also maximize the utility of the buyers in the Fisher market. This is
because traders’ utility function in the Arrow-Debreu market does not derive any utility for the (m + 1)th item
(i.e., money). As a result, we know that the allocation of goods in the Arrow-Debreu market maximizes utility
based on the m goods. Since for the �rst m goods, the utility functions of the traders is the same in both the Fisher
market and the Arrow-Debreu market, this implies that the �rst m elements in the equilibrium consumption of the
Arrow-Debreu market ensure utility maximization in the Fisher Market too.

Market Clearance Any Arrow-Debreu Equilibrium, is market clearing. to show that the market clearance
condition caries to the Fisher market by setting the equilibrium prices in the �sher market as ∀i ∈ [n]pf =

p∗j
p∗m+1

,
we will show that the demand set of the buyers is the same for both the Fisher Market and the Arrow-Debreu
Market. Let Di(p) be the demand set of buyer i in the �sher market, and let ∆i(p) be the demand set of the buyer
in the Arrow-Debreu market:
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∀i ∈ [n] ∆i(p∗) = arg max
xi:xi·p∗≤ei·p∗

u
′

i(xi) (153)

∀i ∈ [n] ∆i(p∗) = arg max
xi:xi·p∗≤bip∗m+1

u
′

i(xi) (154)

∀i ∈ [n] ∆i(p∗) = arg max
xi:xi·p∗≤bip∗m+1

ui(xi) (155)

∀i ∈ [n] ∆i(p∗) = arg max
xi:

1
p∗m+1

xi·p∗≤
bi

p∗m+1
p∗m+1

ui(xi) (156)

∀i ∈ [n] ∆i(p∗) = arg max
xi:xi·pf≤bi

ui(xi) (157)

∀i ∈ [n] ∆i(p∗) = Di(pf ) (158)∑
i∈[n]

∆i(p∗) =
∑
i∈[n]

Di(pf ) (159)

Hence, since the demand
∑

i∈[n] ∆
i(p∗) ensured that the �rst m goods cleared in the Arrow-Debreu market

(because buyer n+ 1 does not demand any of the �rst m goods), then pf must also clear the �sher market.
This means that pf is the vector of prices that satis�es all competitive equilibrium conditions. Hence, we have

shown that we can convert any instance of a �sher market to an arrow-debreu exchange market whose equilibrium
maps back to the equilibrium of the �sher market.

7.4 Computing Arrow-Debreu Exchange Equilibria

We will now discuss the computational aspects of the Arrow-Debreu model. In a �rst time, we will discuss
solving for Arrow-Debreu equilibria for the case when utility functions of the consumers are Cobb-Douglas, we will
then introduce a “natural" process that is guaranteed to converge to equilibrium prices a for a large class of utility
functions. A natural process is simply a simple price updating algorithm that can work in a distributed manner
or way that simulates real world market behavior. Note that the di�culty of �nding Arrow-Debreu equilibria
is entirely dependent of the structures of the utility functions of consumers (we will discuss the computational
complexity of the Arrow-Debreu model for di�erent classes of utility functions in the next few sections).

7.4.1 Arrow-Debreu - Cobb-Douglas (Eaves 1985)

We now consider the case of the Arrow-Debreu exchange market for which the utility function of the con-
sumers is Cobb-Douglas. For this speci�c case, Curtis Eaves provided a fast and interesting algorithm [9]. Cobb-
Douglas utilities are de�ned as:

∀i ∈ [m] ui(xi) =
∏
h∈[l]

xvihih (160)

where we assume that ∀i ∈ [n],
∑

h∈[l] vih = 1

Given prices p, we can calculate the demand dih of consumer i for commodity h as follows (the proof follows
directly from the closed form formula Marshallian demand for Cobb-Douglas utilities):
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dih(p) =
vih(p

Tei)

ph
(161)

Using this closed formula, we can calculate the excess demand zh for commodity h at given prices p as follows:

zh =
∑
i∈[m]

dih(p)−
∑
i∈[m]

eih (162)

=
∑
i∈[m]

vih(p
Tei)

ph
−
∑
i∈[m]

eih (163)

Denoting the valuation matrix for all agents by V and the endowment matrix for all agent byE, we write the
excess demand function z in vector notation to obtain:

z(p) = D(p)−1V TEp−Ejm (164)

where D(p) denotes the matrix whose diagonal entries are the prices for commodities. Note that since V jl =

jm, we can re-write the right hand-side of this expression as follows:

z(p) = D(p)−1V TEp−EV jl (165)

Remember that the marshallian demand function calculates the utility maximizing demand of the consumer,
hence in order to �nd equilibrium prices we just need to set the excess demand to obtain maket clearance and get
prices for an Arrow-Debreu equilibrium. That is, we are looking for price that satisfy the following condition:

D(p)−1V TEp−EV jl = 0 (166)

Note that in this speci�c case Eaves uses a stricter de�nition of equilibrium where we need to have exact market
clearance (i.e. excess demand is equal to 0) as opposed to the classical de�nition of market clearance provided by
Arrow-Debreu, which allows 0 prices if excess demand is negative for any strictly positive price (i.e. the good is
not demanded by any agent). That is, Eaves is looking for only strictly positive prices to the above equation. This
is important since this means that equilibrium prices might not always exists (i.e., the Arrow-Debreu theorems’
equilibrium existence proofs are not constructed for strictly positive prices).

Solving for prices for the above system of equations is equivalent to solving for prices in the following system:

(D(p)V TE)Tjl − (D(p)V TE)jl = 0 (167)

This system is also equivalent to the following system:

(E −D(V TEjl))
Tp = 0 (168)

As previously mentioned, solving this equation alone is not enough since strictly positive prices might not
exist. We need to also discuss existence of strictly positive prices. The above equation tells us that the existence (and
uniqueness) of equilibrium prices is solely based on the matrix V TE and not only on its individual components.
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De�nition 7.4. A matrix is line-sum-symmetric i� its corresponding row and column sums are equal.

Namely, observing equation (167), we can see that in order for strictly positive equilbrium prices to exist, we
need to prove the existence of prices D(p) such that D(p)V TE is line-sum-symmetric. In the words of Eaves,
"solving for prices is the task of �nding a positive row-scaling p, of V TE which is line-sum-symmetric.

In order to describe the necessary and su�cient conditions for the existence of strictly positive prices, we need
to introduce one more concept.

De�nition 7.5. Given two goods i and j, good i is de�ned to access good j i� i = j or if there is a sequence of goods
i = g1, g2, . . . , gr, j = gr+1 such that (V TE)gk,gk+1

> 0 for k = 1, . . . , r.

In other words, a good i accesses good j if there is a sequence of t1, . . . , tr such that agent tk possesses good
k and desires good gk+1 for k = 1, . . . , r.

De�nition 7.6. The matrix V TE is de�ned to have symmetric access if for every pair of goods i and j they access
each other or neither accesses the other.

De�nition 7.7. The matrix V TE is de�ned to have full access i� for every pair of goods i and j, i and j access each
other.

Using all these de�nitions, we now present a theorem proven by Eaves in an earlier paper:

Theorem 7.8. A square non-negative matrix V TE has a line-sum-symmetric positive row scaling i� V TE has
symmetric access. A square non-negative matrix V TE has a line-sum-symmetric positive row scaling that is
unique i� V TE has full access.

This shows that strictly positive equilibrium prices exist i� V TE has symmetric access. This brings us to the
next theorem which we do not prove as it is relatively complicated.

Theorem 7.9. The Cobb-Douglas Arrow-Debreu exchange market (V ,E) has unique strictly positive prices i�
V TE has symmetric access.

Before getting to the computation of the equilibrium we discuss the concept of submarkets.

De�nition 7.10. A submarket is a subset of agents and goods such that any agent possesses and desires only goods
in the submarket and does not own or desire goods outside of the submarket.

Note that every good in a submarket has full access.
It turns out that we can use a very fast decomposition algorithm (that runs inO(m2) time for a square matrix of

size m×m) on the matrix V TE such that we can obtain M independent submarkets (Bk,Wk) for k = 1, . . . ,M .
Since these markets are submarkets, for k = 1, . . . ,M , BT

kWk has a unique row scaling. This means that we
can use Gaussian elimination that runs in O(m3) time for a square matrix of size m × m to obtain the prices of
the goods in each submarket and then combine the prices in each submarket and normalize them to obtain the
equilbrium prices for the Arrow-Debreu market. This approach takes a running time of O(m3) for a matrix V TE

of size m×m.
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7.4.2 The Tatonnement Process

The Tatonnement process (from French “Trial and error”) is a process guaranteed to converge to equilibrium
prices allocations for a class of utility functions called Gross Substitutes. The Tatonnement process (also called
the Walrassian auction) was invented way before the Arrow-Debreu model. Brie�y, it is an auction that adjusts the
prices of the goods based on the excess demand of goods.

De�ne the following optimization program whose output is the utility maximizing and budget constrained
consumption bundle of consumer i (i.e., the demand of consumer i):

Di(p) =


arg maxxi ui(xi)

xi · p ≤ ei · p+
∑n

j=1 αijyj · p

xi ∈ Xi


(169)

where yj is chosen arbitrarily.
De�ne the excess demand function z : P → P :

z(p) =
∑
i∈[m]

Di(p)−
∑
i∈[m]

ei (170)

We now de�ne the Gross Substitutes condition within the context of the Arrow-Debreu model (which is dif-
ferent than the de�nition of the gross substitutes condition for auctions with indivisible items but these de�nitions
are related). In the context of the Arrow-Debreu model, the Gross Substitute condition is a characteristic of the
excess demand function rather than that of the utility functions.

Gross Substitutes: Let p and p′ bet two di�erent price vectors such that ∀h ∈ [l], ph ≤ p
′

h and ∃k ∈ [l] such that
pk < p

′

k. Then an excess demand function z ful�lls the Gross Substitutes condition i�:

∀h 6= k, zh(p) > zk(p
′
) (171)

where zh denotes the hth coordinate in the output vector of the excess demand function (i.e., the excess demand for
the commodity h) Equivalently in calculus terms, we can state the gross substitutes condition as:

∀h 6= k,
∂zh
∂pk

> 0 (172)

In other words, if the prices of some goods are increased while the prices of some other goods are held �xed,
this can only cause an increase in the demand of the goods whose price stayed �xed.

Before introducing the Tatonnement process we will introduce two more conditions that hold under the Arrow-
Debreu Theorem Assumptions.

Homogeneity: ∀α > 0, z(αp) = z(p).
Proof:
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We will �rst show that multiplying prices by a strictly positive scalar does not change demand.

Di(αp) =


arg maxxi ui(xi)

xi · αp ≤ ei · αp

xi ∈ Xi


(173)

=


arg maxxi ui(xi)

xi · p ≤ ei · p

xi ∈ Xi


(174)

= Di(p) (175)

z(αp) =
∑
i∈[m]

Di(αp)−
∑
i∈[m]

ei (176)

=
∑
i∈[m]

Di(p)−
∑
i∈[m]

ei (177)

= z(αp) (178)

Walras’ Law: p · z(p) = 0, meaning that the total spending and total income in the economy are equal to each
other.
Proof:

p · z(p) = p ·

∑
i∈[m]

Di(p)−
∑
i∈[m]

ei

 (179)

= p ·
∑
i∈[m]

Di(p)− p ·
∑
i∈[m]

ei (180)

(181)

Remember from the Arrow-Debreu Theorem conditions that the utility of the agents are non satiated and
quasi-concave. An implication of this is that, in order for the agent to maximize their utilities, they have to spend
their entire budget. That is, agent’s spending is equal to the value of the bundle Mathematically, this gives:

p ·
∑
i∈[m]

Di(p) = p ·
∑
i∈[m]

ei (182)

Hence, going back to the original problem we get:
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p · z(p) = p ·
∑
i∈[m]

Di(p)− p ·
∑
i∈[m]

ei (183)

= p ·
∑
i∈[m]

ei − p ·
∑
i∈[m]

ei (184)

= 0 (185)

We now introduce the Tatonnement process:

Tatonnement Process: Let G(.) be a monotonous sign preserving function. The Tatonement is a time process,
which at each time step t changes prices in the following manner:

dph
dt

= G(zh(p)) (186)

In words, the Tatonnement process, increases the prices of goods that are demanded in excess and decreases
the prices of the goods are supplied in excess at each time step.

Theorem 7.11. If the excess demand function satis�es the homogeneity, Walras’ Law and Gross Substitutes con-
ditions, then the Tatonnement process converges to the equilibrium prices p∗ for the Arrow-Debreu Model.

Note that these conditions are necessary for the Tatonnement process to converge to equilibrium prices but we
will only prove that they are su�cient.

Proof:
To prove this result, we introduce a theorem proved by Kenneth Arrow and Leonid Hurwicz in the 60s [3]. As the
proof is relatively involved, we skip it.

Theorem 7.12. Weak Axiom of Revealed Preferences
If the excess demand z satis�es the homogeneity, Walras’ law, gross substitutes conditions, then for every non-
equilibrium price p and equilibrium price p∗, we have:∑

h∈[l]

p∗hzh(p) > 0 (187)

We will now establish the convergence of the Tatonnement Process using a Lyapunov potential function,
a method used in Dynamic Systems to establish the convergence of time processes to equilibria. We de�ne the
following potential function:

V (p) =
1

2

∑
h∈[l]

(ph − p∗h)
2 (188)

The idea behind the potential function is to calculate the distance between the price vector calculated by
the Tatonnement process at any time step and the equilibrium price vector. Then, if we can show that for each
successive price vector obtained by the Tatonnement process this distance decreases we essentially have proven

42



that asymptotically the process needs to output the equilibrium price vector. To do so, we now parametrize the
price vector outputted by the tatonnement process at each time step t by t. We then get the following potential
function:

V (p) =
1

2

∑
h∈[l]

(ph(t)− p∗h)
2 (189)

Taking the derivative of this potential function with respect to t, we get:

dV

dt
=
∑
h∈[l]

(ph(t)− p∗h)
dph
dt

(190)

By the de�nition of the Tatonnement process we have:

dph
dt

= G(zh(p)) (191)

If we pick G(p) = p (which is a monotonous sign preserving function) and we substitute it into the derivative
of the potential function, we get:

dV

dt
=
∑
h∈[l]

(ph(t)− p∗h) zh(p(t)) (192)

=
∑
h∈[l]

ph(t)zh(p(t))−
∑
h∈[l]

p∗hzh(p(t)) (193)

(194)

By Walras’ law, we know that
∑

h∈[l] ph(t)zh(p(t)) = 0 and by the weak axiom of revealed preferences, we
know that p∗hzh(p(t)) > 0. We then get:

dV

dt
=
∑
h∈[l]

ph(t)zh(p(t))−
∑
h∈[l]

p∗hzh(p(t)) (195)

= −
∑
h∈[l]

p∗hzh(p(t)) (196)

< 0 (197)

The derivative of the potential function with respect to each time step t being negative implies that at each
iteration of the Tatonnement process the distance between the price vector outputted by the Tatonnement process
and the equilibrium price vector only decreases which means that as t goes to in�nity the Tatonnement process’s
output price vector converges to the equilibrium price vector.
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8 Graphical Economy Model

8.1 Model

A graphical economy consists of:

1. A set of divisible goods [l]

2. A set of agents [m] embedded in some undirected graph G = {[m], E}. For notational clarity, we will use
the re�exive symmetric binary relation i ' j to denote an edge between agents i, j ∈ [m]. We will also use
the notation i ∼ j to mean i ' j and i 6= j.

3. Each agent i ∈ [m] is characterized by:

• A utility function ui : Rl → ‘R+ which denotes the preference of the agent i over the space of con-
sumption bundles Rl

• An endowment ei ∈ Rl
+ where eih denotes the amount of good h ∈ [l] i is endowed with.

An instance of a graphical economy is given by a tuple (l, G, U,E). When clear from context, we simply write
(G,U,E)

8.2 Model Outcome

Goods are assigned local prices P = (p1, . . . ,pm)T ∈ Rl
+ such that pih ≥ 0 denotes the price agent i ∈ [m]

charges for good h. A consumption plan13 Xi ∈ Rl×m
+ is a map from buyers to goods, represented as a matrix

such that xijh ≥ 0 denotes the amount of good h ∈ [l] purchased by agent i ∈ [m] from trade partner j ∈ [m].
To enforce the condition that agent only trade with their trade partner determined by the graph underlying the
economy, we set xij = 0 for all i 6' j. An outcome of the graphical economy model is a tuple of consumption
plans and local prices, i.e., (X,P ) ∈ Rm×m×l × Rm×m.

An KKO (Kakade, Kearns, Ortiz) equilibrium of a graphical economy (G,U,E) is an outcome (X∗,P ∗)

such that:

• (Utility Maximization) Agents maximize their utility constrained by their budget:(∑
j'i

x∗ij

)
∈ arg max
xij∈Rl+:

∑
j'i xij ·p∗j≤ei·p∗i

ui

(∑
j'i

xij

)
∀i ∈ [m] (198)

• (Local Clearance) ∑
j'i

x∗ji = ei ∀i ∈ [m] (199)

13Note that in the traditional Arrow-Debreu economy setting, the consumption plan is referred to as an allocation, however since we
will consider agent who purchase goods for both consumption and reselling we will be using di�erent terminology.
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Theorem 8.1 (KKO Existence Theorem). Suppose that the following conditions are satis�ed:

1. ui is continuous

2. ui is quasi-concave, i.e., ∀λ ∈ (0, 1), ui(λx+ (1− λ)y) ≥ min {ui(x), ui(y)}

3. ui is locally non-satiated, i.e., ∀x ∈ Rl
+, ∀ε > 0, ∃y ∈ Bε(x), ui(y) > ui(x)

4. Each agent is endowed with a strictly positive amount of all commodities, i.e., ∀i ∈ [m], [l] ∈ [l]eih > 0.

Then an equilibrium outcome of the Arrow-Debreu Model exists.

We note that in a graphical economy, agents are limited to trade with agents only one hop away from them,
which is an unrealistic presentation of real world behavior. A solution to this is provided by Andrade et al. who
introduce graphical economies with resale.

9 Graphical Economy with Resale Model

9.1 Model

A graphical economy with resale consists of:

1. A set of divisible goods [l]

2. A set of agents [m] embedded in some undirected graph G = {[m], E}. For notational clarity, we will use
the re�exive symmetric binary relation i ' j to denote an edge between agents i, j ∈ [m]. We will also use
the notation i ∼ j to mean i ' j and i 6= j.

3. Each agent i ∈ [m] is characterized by:

• A utility function ui : Rl → ‘R+ which denotes the preference of the agent i over the space of con-
sumption bundles Rl

• An endowment ei ∈ Rl
+ where eih denotes the amount of good h ∈ [l] i is endowed with.

• A resale bound bi ∈ R+ which represents the maximum value of the bundle which the agent is willing
to resell.

An instance of a graphical economy is given by a tuple (l, G, U,E). When clear from context, we simply write
(G,U,E)

9.2 Model Outcome

Goods are assigned local prices P = (p1, . . . ,pm)T ∈ Rl
+ such that pih ≥ 0 denotes the price agent i ∈ [m]

charges for good h. A consumption planXi ∈ Rl×m
+ is a map from buyers to goods, represented as a matrix such

that xijh ≥ 0 denotes the amount of good h ∈ [l] purchased by agent i ∈ [m] from trade partner j ∈ [m]. A resale
plan yi ∈ Rl×m

+ is a map from buyers to goods, represented as a matrix such that xijh ≥ 0 denotes the amount
of good h ∈ [l] purchased by agent i ∈ [m] from trade partner j ∈ [m] for the purposes of resale. To enforce the
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condition that agent only trade with their trade partner determined by the graph underlying the economy, we set
xij = 0 for all i 6' j. An outcome of the graphical economy model is a tuple of consumption plans and local prices,
i.e., (X,Y ,P ) ∈ Rm×m×l × Rm×m×l × Rm×m.

An resale equilibrium of a graphical economy (G,U,E) is an outcome (X∗,Y ∗,P ∗) such that:

• (Utility Maximization) Agents maximize their utility constrained by their budget:(∑
j'i

x∗ij

)
∈ arg max
xij∈Rl+:

∑
j'i xij ·p∗j≤ei·p∗i+

∑
j'i(p∗i−p∗j)·y∗ij

ui(x) ∀i ∈ [m] (200)

• (Optimal Arbitrage) The agents purchase the pro�t maximizine resale plan:

y∗ij ∈ arg max
Y ∈Rl+:

∑
j'i yij ·p∗j≤bi

∑
j'i

(
p∗i − p∗j

)
· yij ∀i ∈ [m] (201)

• (Local Clearance) The quantities of goods purchased for resale and consumption are equal to the sum of the
quantity of goods sold for resale and the consumers’ endowment locally.∑

j'i

x∗ji +
∑
j'i

y∗ji = ei +
∑
j'i

y∗ij ∀i ∈ [m] (202)

Theorem 9.1 (Resale Existence Theorem). Suppose that the following conditions are satis�ed:

1. ui is continuous

2. ui is quasi-concave, i.e., ∀λ ∈ (0, 1), ui(λx+ (1− λ)y) ≥ min {ui(x), ui(y)}

3. ui is strictly increasing in one good

4. Each agent is endowed with a strictly positive amount of all commodities, i.e., ∀i ∈ [m], [l] ∈ [l]eih > 0 or
has a strictly postitive resale bound ∀i ∈ [m], bi > 0.

5. For every good h ∈ [l], there exists an agent i ∈ i such that eih > 0

Then an equilibrium outcome of the Arrow-Debreu Model exists.
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