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1 Preliminaries

1.1 Metric Spaces
A metric space is an ordered tuple (E, d) that consists of a setE and , a function, i.e., a metric, d : E×E →

R+ such that for all x,y, z ∈ E the following hold:

1. (Non-Degeneracy) d(x,y) = 0 ⇐⇒ x = y

2. (Triangle Inequality) d(x, z) ≥ d(x,y) + d(y, z)

3. (Symmetry) d(x,y) = d(y,x)

A sequence {xn}n ⊂ E is said to be a Cauchy sequence if for all ε > 0, there exists N ∈ N such that for all

n,m > N , we have d(xn,xm) < ε.
A metric space (E, d) is said to be complete if any Cauchy sequence {xn}n ⊂ E, xn → x for x ∈ E. That is,

a metric space is complete if any Cauchy sequence in the set has a limit within the set. An example of a complete

metric space is (Rn, d) with d(x,y) =
√∑n

i=1(xi − yi)2
.

Let (E, dE) and (F, dF ) be Banach spaces. A function f : E → F is said to be continuous if for all ε > 0, there

exists δ > 0 such that if dF (f(x), f(y)) < ε, then dE(x,y) < δ for all x,y ∈ E.

A function T : E → F is said to be linear if it satis�es:

1. (Linearity) ∀x,y ∈ E, T (x+ y) = T (x) + T (y)

2. (Homogeneity) ∀x ∈ E, c ∈ R, T (cx) = cT (x)

1.2 Normed Spaces
ANormed Space is an ordered tuple (E, ||.||) that consists of a setE and a function, i.e., anorm, ||.||: E → R+

such that for all x,y ∈ E the following hold:

1. (Normalized) ||x||= 0 ⇐⇒ x = 0

2. (Homogeneity) ∀c ∈ R, ||cx||= |c|||x||
3. (Triangle Inequality) ||x+ y||≥ ||x||+||y||

Note that any norm ||.|| induces a metric d(x,y) = ||x− y|| such that (E, d) is a valid metric space. That is,

any normed space is also a metric space.

IfE is complete with respect to the metric d, then (E, ||.||) is said to be a Banach space, or a complete normed

space. More often than not, we assume thatE is a vector space, e.g., Rn
, in which case (E, ||.||) is called a normed

vector space (NVS).
Let (E, ||.||E) and (F, ||.||F ) be Banach spaces. An example of a complete Banach space is (Rn, ||.||2).

A function f : E → F is said to be continuous if for all ε > 0, there exists δ > 0 such that if ||f(x)−f(y)||< ε,
then ||x− y||< δ for all x,y ∈ E. A function T : E → F is said to be bounded if there exists M <∞ such that

for all x ∈ E:

||T (x)||F< M ||x||E (1)

1.3 Topological Spaces
A topological space is an ordered tuple (E, T ) that consists of a set E and and a collection T of (open)

subsets of E, i.e., a topology, such that:

1. E is closed under arbitrary unions, i.e., if {Uα}α∈A, then

⋃
α∈A Uα ∈ T
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Figure 1: The relationship between di�erent mathematical spaces. An arrow indicates that a space is a kind of

another space, e.g., a metric space is a kind of topological space.

2. E is closed under �nite intersections, i.e., if {Ui}ni=1, then

⋂n
i=1 Ui ∈ T

If x ∈ E (or X ⊂ E), a neighborhood of x (or E) is a set N ⊂ E such that x ∈ N◦ (or X ⊂ N◦) Let

(E, E) and (F,F) be two topological spaces. A function f : E → F is said to be continuous if for all U ⊂ F ,

f−1(U) ∈ E and f−1(U) is open. That is, a function f is continuous if for all x ∈ E, f−1(U) is a neighborhood of

x, for every neighborhood U of f(x).

Remark 1.1. Any normed space is a metric space, and anymetric space is a topological space. The relationship between

di�erent mathematical spaces can be observed in �g. 1.

1.4 Derivatives
An operator f : E → F is said to be (Fréchet) di�erentiable at a if there exists a bounded linear operator,

named the Fréchet derivative at a, Df(a) : E → F , such that:

lim
‖h‖→0

‖f(a+ h)− f(a)− (Df(a))h‖F
‖h‖E

= 0 (2)

If the Frćhet derivative exists for all a ∈ dom(f) = E, then f is said to be (Frćhet) di�erentiable. A di�erentiable

function f is said to be C1
if Df : E → L(E,F ), where L(E,F ) is the space of continuous (=bounded) linear

operators from E to F , is continuous. If E = Rn
and F = R, then we denote the Frćhet derivative Df by∇f and

call it the gradient.
An operator f : E → F is said to be (Gâteau) di�erentiable at a, if for all x ∈ E, there exists a bounded

linear operator, named the Gâteau derivative at a in the direction of x, Dxf(a) : Rn → Rn
, such that:

Dxf(a) =
f(a+ tx)− f(a)

t
(3)

If the f is Gâteau di�erentiable for all a ∈ dom(f) = E, then f is said to be (Gâteau) di�erentiable. If E = Rn

and F = R, then we denote the Gâteau derivative in the direction of x Dxf by ∇xf and call it the directional
derivative of f in the direction of x.

For the purposes of this document, we will consider the Banach space (Rn, ||.||2) and will often deal with

functionals which are functions of the form f : E → R, i.e., functions that map from a Banach space to the set

of reals. As a result will only deal with gradients and directional gradients. Unfortunately, often the functions that

we deal with might not be di�erentiable, in this case regular calculus will not get us far and we will have to use

subdi�erential calculus, which can be considered generalization of calculus to non-di�erentiable functions.
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Figure 2: Di�erent subgradients of the absolute value function f(x) = |x| at x = 0. The set of subi�erentials at

x = 0 is given by ∂xf(0) = {y | |y|< 1}

1.5 Subdi�erential Calculus
Recall that a functional f : Rn → R is convex if:

∀x,y ∈ Rn, λ ∈ (0, 1) f(λx+ (1− λ)y) ≥ λf(x) + (1− λ)f(y) (4)

We say that a vector h ∈ Rn
is a subgradient of a continuous, convex function f : Rn → R at a ∈ dom(f) if for

all x ∈ dom(f):

f(x) ≥ f(a) + hT (x− a) (5)

A function can have multiple subgradients at a point a, e.g., �g. 2. The set of all subgradients h at a point a
satisfying the above condition for a function f of x is called the subdi�ential of f at a and is denoted ∂xf(a) =
{h|f(x) ≥ f(a) +hT (x−a)}. If f is convex and di�erentiable, then its subdi�erential at any point is equal to its

gradient, i.e., ∀ ∈ Rn, ∂xf(a) = {∇xf(a)}.
Subgradients satisfy the additivity property:

∂x(f + g)(a) = ∂xf(a) + ∂xg(a) (6)

where the right-hand sum is the minkowski sum, i.e., ∂xf(a) + ∂xg(a) = {b+ c | b ∈ ∂xf(a), c ∈ ∂xg(a)}.
Subgradients satisfy also the composition property:

∂xg ◦ f(a) = g′ ◦ ∂xf(a) (7)

where g is a di�erentiable function with derivative g′ and g′ ◦ ∂xf(a) = {g′(b) | b ∈ ∂xf(a)}.
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2 Convex Sets, Convex Functions and Dual Representations

2.1 Convex Sets and Dual Representation
We de�ne the dual spaceE∗ ofE as the space of all continuous linear functionals onE. Note that forE = Rn

,

E∗ = Rn
since any linear functional on E = Rn

is simply a a dot product with another vector in Rn
. That is, for

E = Rn
, any continuous linear functional f ∈ E∗ on E can be simply expressed as f(x) = 〈c,x〉 for some c ∈ E.

Given f ∈ E∗ and x ∈ E, by convention, we write f(x) = 〈f, x〉 and make no distinction between the "functional

form" of the function f its "vector form".

An (a�ne) hyperplane is a subsetH ⊂ E, of the formH = {x ∈ E; f(x) = α}where f ∈ E∗. A halfspace
is de�ned as the space on either sides of a hyperplane. The closed upper halfspace (resp. lower halfspace)

de�ned by a hyperplane H = {x ∈ E | f(x) = α} is given by {x ∈ E | f(x) ≥ α} (resp. {x ∈ E | f(x) ≤ α}).
The halfspaces are closed (instead of open) if the inequality holds strictly.

A set S ⊂ E is said to be convex if for any collection of points in S, {xi}n1 ⊂ S, and non-negative numbers

{λi}n1 ⊂ R+ s.t.

∑n
i=1 λi = 1, we have

∑n
i=1 λixi ∈ S We now introduce the separating hyperplane theorem

(or Hahn Banach’s geometric form), one of the most important results in functional analysis.

Theorem 2.1 (Separating Hyperplane Theorem). Let C ⊂ E andD ⊂ E be two nonempty convex subsets such

that C ∩D = ∅. Then, there exists a hyperplane H that separates A and B.

Figure 3: The Seperating Hyperplane Theorem

There are two equivalent ways to represent a convex set S ⊂ E:

1. The union of points in the set (standard/primal representation)

2. The intersection of halfspaces containing the set (the dual representation)

At the core of convex programming duality and many duality relationships in mathematics lies this represen-

tation duality that exists for convex sets.

Note: Duality is very overused word, in general, however, it is used to note a way to group elements of a set

in pairs, e.g., Linear Programming duality allows us to connect two distinct problems together.

The standard/primal representation of sets is the one that we are used to and is simply the collection of all

points contained in the set. However, it turns out that by the separating hyperplane theorem, any convex set can

also be represented as an intersection of halfspaces that contain it. The hyperplanes that de�ne the halfspaces in

which the set is contained are called supporting hyperplanes.

Theorem 2.2 (Convex Set Duality). Every closed set can be expressed as the intersection of all closed hyperspaces
containing it.
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Proof. Let S ⊂ E be a closed convex set and letH be the collection of halfspaces that contain S, i.e., ∀H ∈ H, S ⊆
H . Clearly, we have S ⊆

⋂
H∈HH since every H contains S by de�nition. We then just have to prove no point

outside of S is part of the intersection of halfspaces to prove equality.

Let x /∈ S. Since {x} and S are closed and convex sets, by the seperating hyperplane theorem, there exists a

hyperplane and a as a result a halfspace H s.t. H ∈ H and x /∈ H . Hence, we have that x /∈
⋂
H∈HH

Figure 4: Representing a convex set as intersection of halfspaces containing it.

3 Convex Functions and Dual Representations
Often, in convex analysis we study functions via a set representation of their graph. A set representation of

a function is equivalent to the standard de�nition of a function, however, it is often more convenient to consider

the set representation as it provides geometric intuition. A convex functional f can be represented as a set in

two ways. Set representation of functions come in handy in convex analysis as they allow us to understand the

geometric properties of functions better.

The standard/primal set representation of a functional f : E → R is through its epigraph, epif , which is the

set of points lying above the function’s graph. That is:

epif = {(x, y) ∈ E × R | f(x) ≤ y} (8)

The epigraph allows us to represent a function as the set of points above its graph. Assuming that f is con-

tinuous (actually lower semi continuity is enough), its epigraph epif is also closed. Now, since we can represent

Figure 5: Epigraph of a function
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a function as a union of points above it graph, i.e., the epigraph, assuming that f is convex, we should also be

able to represent it as intersection of halfspaces that contain it! In fact, since f is convex, then its epigraph is also

convex, hence there must exist a collection of halfspaces H whose intersection is equal to the epigraph of f . We

now introduce the Fenchel conjugate which is very closely related to the dual representation of the epigraph of f .

The Fenchel conjugate of a functional f : E → R is function on the dual space de�ned as f ∗ : E∗ → R and is

given by:

f ∗(y) = sup
x∈Rn

{〈y,x〉 − f(x)} = − inf
x∈Rn

{f(x)− 〈y,x〉} (9)

Figure 6: The Fenchel conjugate of a function f gives the largest di�erence value between the function and a line

through the origin.

Figure 7: The Fenchel conjugate, f ∗(x∗) at x∗, encodes the supporting hyperplane of the function f , with f ∗(x∗)
being the y-o�set of the hyperplane and x∗ being the slope.

Example: The convex conjugate of an a�ne function f(x) = 〈a, x〉 − b is

f ∗ (x∗) =

{
b, x∗ = a
+∞, x∗ 6= a.

(10)

The convex conjugate of the absolute value function f(x) = |x| is

f ∗ (x∗) =

{
0, |x∗| ≤ 1
∞, |x∗| > 1.

(11)
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The most important fact about the Fenchel conjugate f ∗ is that it encodes the supporting hyperplanes of the

epigraph of the function f , epif . That is, for any x∗ ∈ E∗ = Rn
, denote the maximizer of f ∗(x∗) by x, i.e.,

x = arg supx∈Rn {〈x∗,x〉 − f(x)}, the following relationship holds:

epif =
⋂

{x∗|f∗(x∗)<∞}

{(x, y) | 〈x,x∗〉 − f ∗(x∗) ≤ y} (12)

Finally, one can relate the arguments of a function and it Fenchel conjugate via subgradients, as shown by the

following theorem.

Theorem 3.1 (Conjugate Subgradient Theorem). Suppose f and f ∗ are convex conjugates; then we have

f(x) = sup
x∗
〈x,x∗〉 − f ∗ (x∗) (13)

f ∗ (x∗) = sup
x
〈x,x∗〉 − f(x) (14)

and furthermore, for the x and x∗ solving them respectively,

x∗ ∈ ∂xf(x) (15)

x ∈ ∂xf ∗ (x∗) (16)

where ∂xf(x) is the subdi�erential of f .
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4 Lagrangian Duality Theory

4.1 De�nitions
Consider the optimization problem P , given by the ordered tuple P = (m, p, {fi}pi=0), wherem, p ∈ N, p ≥ m

and ∀i ∈ [p], fi : Rn → R, called the primal problem:

min
x

f0(x) (17)

Constrained by fi(x) ≤ 0 ∀i ∈ {1, . . . ,m} (18)

And fi(x) = 0 ∀i ∈ {m+ 1, . . . , p} (19)

when m and p are clear from context, we simply denote P = ({fi}pi=0).

A vector x ∈ Rn
is said to be feasible if it satis�es eqs. (18) to (19). We assume that there exists a feasible x,

otherwise the problem is not interesting since it does not have solution!
1

4.2 The Lagrangian
We de�ne the Lagrangian function, L : Rn × Rm

+ × Rp−m
, corresponding to the above optimization problem

P as follows:

L(x,λ,µ) = f0(x) +
m∑
i=1

λifi(x) +

p∑
i=m+1

µifi(x) (20)

where λ ∈ Rm
+ and µ ∈ Rp−m

are called slack variables. These variables are called slack variables because by

setting them wisely we obtain a function whose minimum corresponds exactly to that of the problem P. We now

show how we should set these slack variables such as to obtain a function whose minima corresponds to the minima

of the optimzation problem P. Observe that for every feasible x ∈ Rn
, and for all λ ∈ Rm

+ , µ ∈ Rp−m
, f0(x) is

bounded below by the Lagrangian, that is:

∀λ ∈ Rm
+ , µ ∈ Rp−m f0(x) ≥ L(x,λ,µ) (21)

Taking the supremum over all λ ∈ Rm
+ , µ ∈ Rp−m

, we get:

f0(x) ≥ sup
λ≥0,µ

L(x,λ,µ) (22)

Before we move further, let’s look further at the right hand side quantity in the above:

sup
λ≥0,µ

L(x,λ,µ) = sup
λ≥0,µ

[
f0(x) +

m∑
i=1

λifi(x) +

p∑
i=m+1

µifi(x)

]
(23)

= f0(x) + sup
λ≥0

m∑
i=1

λifi(x) + sup
µ

p∑
i=m+1

µifi(x) (24)

= f0(x) +
m∑
i=1

sup
λi≥0

λifi(x) +

p∑
i=m+1

sup
µi

µifi(x) (25)

1
This also explain why we use a minimum instead of a supremum.

9



Observe the following:

sup
λi≥0

λifi(x) =

{
0 if fi(x) ≤ 0
∞ Otherwise

(26)

sup
µi

µifi(x) =

{
0 if fi(x) = 0
∞ Otherwise

(27)

By considering the extended real-line, R̄ = R∪{−∞,∞}, we can replace the supremum by a maximum, since the

supremum exists and can re-express the supremum over the Lagrangian as a maximum as follows:

max
λ≥0,µ

L(x,λ,µ) =

{
f0(x) if ∀i ∈ [0,m], fi(x) ≤ 0 and ∀i ∈ [m, p−m], fi(x) = 0
∞ Otherwise

(28)

=

{
f0(x) if x is feasible

∞ Otherwise

(29)

That is, by taking the maximum over the slack variables (λ,µ) we essentially obtain a function where all feasible

values x of the program P corresponds to the values of f0(x), and to∞ for all infeasible values. As a result, we

have:

min
∀i∈{1,...,m}fi(x)≤0
∀i∈{m+1,...,p}fi(x)=0

f0(x) = min
x

max
λ≥0,µ

L(x,λ,µ) (30)

4.3 The Lagrangian Dual
[Deni: Add some more intuition on the dual.]The above relation suggests that if we could switch the order of

the min and max on the right hand-side, we could obtain a dual maximization problem that is somehow related

to our original minimization problem P . This is the intuition behind deriving another program D called the dual
from the Lagrangian. The dual variables, i.e., the Lagrangian Slack variables, often have meaning and can be used

to solve for an additional problem related to the original optimzation problem P . The Lagrange dual function
of a program P with Lagrangian function L is de�ned as:

g(λ,µ) = min
x
L(x,λ,µ) (31)

Note that more generally, the minimum is replaced with an in�mum in the case if a minimum of the Lagrangian

does not exist but since here we consider the extended set of reals, R̄, instead of the reals, R, we can use a min. The

dual program, D of the primal program is given as:

max
λ,µ

g(λ,µ) (32)

Constrained by λ ≥ 0 (33)

Note that the dual function g is concave, even when the initial problem is not convex, because it is a point-wise

minimum of a�ne functions. Note that under no assumptions on the Lagrangian we have that weak programming

duality holds which relates the optimal values of the primal and dual programs:

Theorem 4.1. Weak Programming Duality

Let x∗ be any feasible solution to the primal program P , and (λ∗,µ∗) be any feasible solution to the dual program
of D. Then f0(x∗) ≥ g(λ∗,µ∗)
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Proof.

max
λ≥0,µ

L(x,λ,µ) ≥ L(x,λ
′
,µ
′
) ∀x,λ′ ≥ 0,µ

′
(34)

min
x

max
λ≥0,µ

L(x,λ,µ) ≥ min
x
L(x,λ

′
,µ
′
) ∀λ′ ≥ 0,µ

′
(35)

min
x

max
λ≥0,µ

L(x,λ,µ) ≥ max
λ≥0,µ

min
x
L(x,λ,µ) (36)

f0(x∗) ≥ g(λ∗,µ∗) (37)

In order for the solutions of the primal and dual problems to be related, one would expect that the optimal value

of the primal and dual problems should be equal to each other, i.e., the min-max of the Lagrangian should be

equal to its max-min. Surprisinly, the conditions for this to be true can formalized in a game theoretic manner! In

fact, the Lagrangian’s min-max optimization can be seen as a game in between two opponents trying to minimize

(resp. maximize) a payo� function. This intuition can be formalized with a generalized version of the min-max

theorem which applies beyond Nash equilibria for 2 person zero-sum games but to arbitrary convex-concave payo�

functions:

Theorem 4.2. Minimax Theorem Let X ⊂ Rn
and Y ⊂ Rm

be compact convex sets. If f : X × Y → R is a

continuous function that is concave-convex, i.e. f(·, y) : X → R is concave for �xed y, and f(x, ·) : Y → R is

convex for �xed x Then we have that

max
x∈X

min
y∈Y

f(x, y) = min
y∈Y

max
x∈X

f(x, y) (38)

Going back to our Lagrangian, one can construct sets

X =
{

(λ,µ) | min
x
L(x,λ,µ) > −∞

}
(39)

Y =

{
x | max

λ≥0,µ
L(x,λ,µ) <∞

}
(40)

Hence, if X and Y are convex and compact, by the min-max theorem, we have:

min
x∈Y

max
(λ,µ)∈X

L(x,λ,µ) = max
(λ,µ)∈X

min
x∈Y

L(x,λ,µ) (41)

min
x

max
λ≥0,µ

L(x,λ,µ) = max
λ≥0,µ

min
x
L(x,λ,µ) (42)

where the last line holds since the optimization problems’ optimizers do not change when the domain changes.

This means that the Lagrangian can be seen as the payo� function of a two-player zero-sum game, where both

players are trying to maximize their worst-case payo� or minimize their opponents’ best-case payo�. When min-

max value of the Lagrangian is equal to the max-min value, we say that strong duality holds for the program P .

We will provide conditions on the program P , in sections 5 to 6.
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5 Linear Programming
Linear Programming is a mathematical method that allows to �nd the variables that maximize or minimize

a linear function that is constrained by a set of linear constraints. That is, linear programming refers to the set of

methods that allow us to solve problems de�ned by the inputs (A, b.c) and that can be expressed in the following

canonical form :

Primal:

min
x

bTx (43)

Constrained by ATx ≥ c (44)

And x ≥ 0 (45)

We will now derive the dual program of the problem above using the machinery introduced in the previous section.

Since the above expression is the canonical form for any linear program, the dual that we derive will also give us a

formula to easily �nd the dual of any linear program. Let’s �rst calculate the Lagrangian of the above program:

L(x,λ,µ) = bTx+ λT (c−ATx)− µTx (46)

= xTb+ cTλ− xTAλ− xTµ (47)

= cTλ+ xT (b−Aλ)− xTµ (48)

We can then calculate the dual objective function g:

g(λ,µ) = inf
x
{cTλ− xT (Aλ− b)− µTx} (49)

Notice that this function is exactly Lagrangian form of the following maximization problem:

max
λ

cTλ (50)

Constrained by Aλ ≤ b (51)

and µ ≥ 0 (52)

Adding to this program the dual program feasibility constraint, we obtain the dual of the standard form of Linear

programming where we renamed the slack variable λ as y. The dual variables y are called the dual variables.

Dual:

max
y

cTy (53)

Constrained by Ay ≤ b (54)

And y ≥ 0 (55)

Note that di�erent authors might refer to the minimization problem as the dual and the maximization problem as

the primal. The expressions cTx and bTy are respectively called the objectives of the primal and dual problems.

Solutions x∗ for the primal that satisfy the primal constraints Ax∗ ≤ b, x∗ ≥ 0 are called feasible solutions.
Similarly, solutions y∗ for the dual that satisfy the dual constraints ATy∗ ≤ c, y∗ ≥ 0 are called feasible
solutions. y∗. A linear program is said to be a feasible program i� there exists variables for the program that

are feasible, otherwise the program is said to be an infeasible program. A feasible variable x∗ for the primal

is called optimal i� ∀x ∈ {x |Ax ≤ b, x ≥ 0}, cTx∗ ≥ cTx. A linear program in the primal form is said to

be bounded i� ∀x ∈ {x |Ax ≤ b, x ≥ 0}, cTx <∞. A feasible variable y∗ for the dual is called optimal i�

∀y ∈ {y | ATy ≤ c, y ≥ 0}, bTx∗ ≥ bTx. A linear program in the primal form is said to be bounded i�

∀y ∈ {y |ATy ≤ c, y ≥ 0}, bTy <∞

12



There are many polynomial time algorithms to solve linear programs such as the simplex or big M algorithms.

These algorithms generally take as input (A, b, c) and return a tuple (x∗,y∗) which are respectively the optimal

variables for the primal and dual problems.

Below are the two most important results from Linear Programming Duality that con�rm our initial motivation

of the dual using the min-max theorem:

Theorem 5.1. Strong Programming Duality for Linear Programming

Let x∗ be any feasible solution to the primal of a linear program P, and (λ∗,µ∗) be any feasible solution to the

dual program of P. Let f0(x∗) be the objective of the primal and let g(λ∗,µ∗) be the objective of the dual, then
f0(x∗) = g(λ∗,µ∗).

13



6 Convex Programming
Convex Programming is a mathematical method that allows to �nd the variables that maximize or minimize

a function that is constrained by a set of convex inequality constraints and a�ne equality constraints. That is, con-

vex programming refers to the set of methods that allow us to solve problems de�ned by the inputs (f0, f1, . . . , fm)
and that can be expressed in the following canonical primal form:

Primal:

min
x

f0(x) (56)

Constrained by fi(x) ≤ 0 ∀i ∈ {1, . . . ,m} (57)

And hi(x) = 0 ∀i ∈ {m+ 1, . . . , p} (58)

Note that di�erent authors might refer to the minimization problem as the dual and the maximization problem

as the primal.

It is harder to derive the dual in closed form like we did for linear programming, however this can be done

by going through the lagrangian or using shortcuts with the help of Frenchel conjugates. More information about

�nding the dual of a convex primal program can be found in section 3 of [1].

De�nition 6.1. Slater’s conditionWe say that the problem satis�es Slater’s condition if it is strictly feasible, that is:

∃x0 ∈ D : fi (x0) < 0, i = 1, . . . ,m, hi (x0) = 0, i = 1, . . . , p

We can replace the above by a weak form of Slater’s condition, where strict feasibility is not required whenever the

function fi is a�ne.

For our purposes, we present the following duality theorem to con�rm our intuition from the minimax theorem

that a dual exists with the same objective value.

Theorem 6.2. Strong duality via Slater condition
If the primal problem (8.1) is convex, and satis�es the weak Slater’s condition, then strong duality holds. That is,

let (x∗,λ∗,µ∗) be the optimal variables for the primal and dual respectively, then f0(x∗) = g(λ∗,µ∗).
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7 Properties, Characteristics and Comparative Statics of Optimization
Problems
In this section, we �rst discuss the properties of optimization problem in an abstract setting and then provide

optimality conditions for convex optimization problems.

7.1 Continuity, Existence, and Uniqueness
We now consider a more generally stated optimization problem in terms of a constraint set de�ned by some

correspondence C : Θ ⇒ X . Consider the class of parametric constrained optimization problems de�ned over the

convex set of parameters Θ.

max
x∈X (θ)

f(x,θ) (59)

where X : Θ ⇒ X is a non-empty and compact-valued correspondence.

The value function of this optimization problem is de�ned as V (θ) = maxx∈C(θ) f(x,θ), while it’s solution
correspondence is de�ned as X ∗(θ) = arg maxx∈C(θ) f(x,θ). We denote any of the solutions outputted by the

solution correspondence X ∗(θ) at some θ ∈ Θ by x∗(θ), i.e., x∗(θ) ∈ X ∗(θ). Additionally, if f is strictly concave,

then the solution is unique for all θ ∈ Θ, in which case we call the solution correspondence, the solution function
and simply denote x∗(θ), since X ∗(θ) = {x∗(θ)}.

The maximum theorem provides us with a characterization of the continuity and uniqueness properties of the

value and solution mappings.

Theorem 7.1 (Maximum Theorem). Consider the class of parametric constrained optimization problems

max
x∈X (θ)

f(x,θ) (60)

de�ned over the set of parameters Θ. Suppose that (1) X : Θ ⇒ X is continuous (i.e. lsc and usc) and compact-

valued, and (2) f : X × Θ → R is a continuous function. Let X ∗(θ) = arg maxx∈X (θ) f(x,θ) and, V (θ) =
maxx∈X (θ) f(x,θ), then:

1. X ∗(θ) is non-empty for every θ ∈ Θ

2. X ∗ is upper semi-continuous (and thus continuous if X ∗ is singleton-valued)

3. V is continuous

Often, we are interested in knowing if the value function is convex or if the solutions are unique. The following

result allows us to get a better understanding of the properties of optimization problems.

Theorem 7.2. Consider the class of parametric constrained optimization problems de�ned over the convex set of

parameters Θ.

max
x∈X (θ)

f(x,θ) (61)

Suppose that (1) X : Θ ⇒ X is continuous and compact-valued, and (2) f : X ×Θ→ R is a continuous function.

Let x∗(θ) = arg maxx∈X (θ) f(x,θ) and, V (θ) = maxx∈X (θ) f(x,θ), then:

1. If f(·,θ) is a quasi-concave function in x for each θ, and X is convex valued, then x∗ is convex-valued.
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2. If f(·,θ) is a strictly quasi-concave function in x for each θ, and D is convex-valued, then x∗(θ) is single-
valued.

3. If f is a concave function in (x,θ) and X is convex-valued, then V is a concave function and x∗ is convex-
valued.

4. If f is a strictly concave function in (x,θ) and X is convex-valued, then V is strictly concave and x∗ is a
function.

7.2 Optimality Conditions and Characterization of Solutions
Often, it might not be clear what properties the optimal solutions to a convex program might satisfy. As a

result, to prove that a solution to a particular convex program satis�es certain properties, one uses the optimality

conditions for the convex program given via the Lagrangian. We now introduce one of the most important results

in convex analysis, the Karush–Kuhn–Tucker theorem. The Karush–Kuhn–Tucker theorem provides optimality

conditions for a convex program via its associated Lagrangian.

Theorem 7.3 (Karush–Kuhn–Tucker theorem). Let L(x,λ,µ) be the Lagrangian function corresponding to the
optimization problem P = (m, p, {fi}pi=0) given by:

min
x

f0(x) (62)

Constrained by fi(x) ≤ 0 ∀i ∈ {1, . . . ,m} (63)

And fi(x) = 0 ∀i ∈ {m+ 1, . . . , p} (64)

Suppose that for all i = 1, . . . , p, fi(x)’s are all convex and there exists ax such that ∀i = 1, . . . ,m, fi(x) <
0, i.e., there exists an interior point, then the optimalx? has an associated (µ?,λ?) such that (x?,λ?,µ?) is a saddle
point of L(x,λ,µ) and satis�es the following conditions:

1. 0 ∈ ∂xf0(x) +
∑m

i=1 λ
∗
i∂xfi(x) +

∑p
i=m+1 µ

∗
i∂xfi(x) ˙

(Stationarity)

2. ∀i ∈ {1, . . . ,m}, λ∗i fi(x
∗) = 0 ˙

(Complementary Slackness)

3. ∀i ∈ {1, . . . ,m}, fi(x
∗) ≤ 0 and ∀i ∈ {m+ 1, . . . , p} fi(x

∗) = 0 ˙
(Primal Feasibility)

4. ∀i ∈ {1, . . . ,m}, λ∗i ≥ 0 ˙
(Dual Feasibility)

Proof. Since we have a strictly feasible point, it must be that Slater’s condition holds and hence strong duality,

which gives:

f0(x∗) = g(λ∗,µ∗) (65)

f0(x∗) = min
x
L(x,λ∗,µ∗) (66)

f0(x∗) = min
x

{
f0(x) +

m∑
i=1

λ∗i fi(x) +

p∑
i=m+1

µ∗i fi(x)

}
(67)

f0(x∗) ≤ f0(x∗) +
m∑
i=1

λ∗i fi(x
∗) +

p∑
i=m+1

µ∗i fi(x
∗) (68)

f0(x∗) ≤ f0(x∗) (69)
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This means that all inequalities are actually equalities which implies that f0(x∗) = g(λ∗,µ∗) = L(x∗,λ∗,µ∗).

As a result, we have x∗ ∈ arg minx L(x,λ∗,µ∗). Hence, the stationarity conditions for x∗ are given by:

0 ∈ ∂xL(x,λ∗,µ∗) (70)

0 ∈ ∂xf0(x) +
m∑
i=1

λi∂xfi(x) +

p∑
i=m+1

µi∂xfi(x) (71)

The rest of the conditions can be obtained from de�nitions.

7.3 Comparative Statics
More than often, we are interested in understanding how the value function or the solution function changes

as the parameters θ of the problem changes. Two important tools allow us to obtain answers to these questions, 1)

the inverse function theorem, and 2) the envelope theorem.

7.3.1 Inverse Function Theorem

TODO The inverse function theorem (IFT) allows us to compute the derivative of the solution function.

7.3.2 Envelope Theorems

While the IFT allows us to compute the derivative of the solution function, it does not provide any information

on the derivative of the value function. Danskin’s theorem [2] o�ers insights into optimization problems when the

constraint set is �xed, i.e., the optimization problem is of the form maxx∈X f(x,θ), whereX ⊂ Rm
is compact and

non-empty. Among other things, Danskin’s theorem allows us to compute the gradient of the objective function of

this optimization problem with respect to θ.

Theorem 7.4 (Danskin’s Theorem). Consider an optimization problem of the form: maxx∈X f(x,θ), whereX ⊂
Rn

is compact and non-empty. Suppose thatX is convex and that f is concave in x. Let V (θ) = maxx∈X f(x,θ)

and X ∗(θ) = arg maxx∈X f(θ,x). Then V is di�erentiable at θ̂, if the solution correspondence X ∗(θ̂) is a

singleton: i.e., X ∗(θ̂) = {x∗(θ̂)}. Additionally, the gradient at θ̂ is given by V ′(θ̂) = ∇θf(θ̂,x∗(θ̂)).

Example 7.5 (Shepherd’s Lemma). Consider the expenditure minimization problem:

min
xi∈Rn:ui(xi)≥νi

p · xi (72)

The value function associated with the expenditure minimization problem is called the expenditure function and is

denoted as follows:

ei(p, νi) = min
xi∈Rn:ui(xi)≥νi

p · xi (73)

The solution function associated with the expenditure minimization problem is called the Hicksian demand and is

denoted as follows:

hi(p, νi) = arg min
xi∈Rn:ui(xi)≥νi

p · xi (74)

By the envelope theorem, the derivative of the expenditure function in p is given by:

∇pei(p, νi) = x?i (p) + λ(xi(p),p)(0) (75)

= hi(p, νi) (76)
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Unfortunately, Danskin’s theorem does not hold when the constraint setX is replaced by a correspondence,i.e.,

when the inner problem is maxx∈X (θ) f(θ,x).

Example 7.6 (Danskin’s theorem does not apply to min-max games with dependent strategy sets). Consider the
optimization problem:

max
x∈R:x+θ≥0

−x2 + x + 2θ + 2 . (77)

The solution to this problem is unique, given any θ ∈ Θ, meaning the solution correspondenceX∗(θ) is singleton-
valued. We denote this unique solution by x∗(θ). After solving, we �nd that

x∗(θ) =

{
1/2 if θ ≥ −1/2

−θ if θ < −1/2
(78)

The value function V (θ) = maxx∈R:x+θ≥0−x2 + x + 2θ + 2 is then given by:

V (θ) = f(θ, x∗(θ)) (79)

= −x∗(θ)2 + x∗(θ) + 2θ + 2 (80)

=

{
−1/4 + 1/2 + 2θ + 2 if θ ≥ −1/2

−θ2 − θ + 2θ + 2 if θ < −1/2
(81)

=

{
9/4 + 2θ if θ ≥ −1/2

−θ2 + θ + 2 if θ < −1/2
(82)

The derivative of this value function is:

dV

dθ
=

{
2 if θ ≥ −1/2

1− 2θ if θ < −1/2
(83)

However, the derivative predicted by Danskin’s theorem is 2.

N.B. For simplicity, we do not assume the constraint set is compact in this example. Compactness of the constraint

set can be used to guarantee existence of a solution, but as a solution to this particular problem always exists, we can

do away with this assumption.

The following theorem called the envelope theorem, due to Milgrom and Segal [3], generalizes Danskin’s

theorem to handle parameterized constraints:

Theorem 7.7 (Envelope Theorem [3]). Consider the maximization problem

V (θ) = max
x∈X

f(x,θ), subject to gk(x,θ) ≥ 0, for all k = 1, . . . , K , (84)

where X ⊆ Rm
.

De�ne the solution correspondence X∗(θ) = arg maxx∈Θ:g(x,θ)≥0 f(x,θ). Suppose that 1. f, g1, . . . , gK are

continuous and concave in y; 2. ∇θf,∇θg1, . . . ,∇θgK are continuous in (x,θ); and 3. ∀θ ∈ Θ,∃x ∈ X s.t.

gk(x,θ) > 0, for all k = 1, . . . , K ., then the value function V is absolutely continuous, and at any point θ̂ ∈ Θ
where V is di�erentiable:

∇θV (θ̂) = ∇θL(x∗(θ̂),λ∗(x∗(θ̂), θ̂), θ̂) = ∇θf
(
x∗(θ̂), θ̂

)
+

K∑
k=1

λ∗k(x
∗(θ̂), θ̂)∇θgk

(
x∗(θ̂), θ̂

)
, (85)

where λ∗(x∗(θ̂), θ̂) =
(
λ∗1(x∗(θ̂, θ̂)), . . . , λ∗K(x∗(θ̂), θ̂)

)T
∈ Λ∗(x∗(θ̂), θ̂) are the Lagrange multipliers associ-

ated associated with x∗(θ̂) ∈ X∗(θ̂).
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Proof. First, we have f, g1, . . . , gK are continuous and concave in y and ∀θ ∈ Θ,∃x ∈ X s.t. gk(x,θ) > 0, for all

k = 1, . . . , K . We can restate it as f̃ , g̃1, . . . , g̃K are continuous and convex iny and ∀θ ∈ Θ, ∃x ∈ X s.t. g̃k(x,θ) <
0, for all k = 1, . . . , K , where f̃ = −f and g̃k = −gk ∀k = 1, . . . , K . Thus, we can apply the K.K.T theorem to the

convex program (f̃ , g̃) and equivalently to the concave program (f, g): Let x∗ ∈ maxx∈X:g(x,θ)≥0 f(x,θ) be the

optimal solution to the value function problem, we have ∀θ̂ ∈ Θ, ∃λ∗(x(θ̂), θ̂) ≥ 0 s.t.

V (θ̂) = L(x∗(θ̂),λ∗(x∗(θ̂), θ̂), θ̂)

where L is the Lagrangian associated with the concave program (f, g).

Then,

∇θV (θ̂) = ∇θL(x∗(θ̂),λ∗(x∗(θ̂), θ̂), θ̂)+

∇θx∗(θ̂)∇xL(x∗(θ̂),λ∗(x∗(θ̂), θ̂),x∗(θ̂))+

∇θλ∗(x∗(θ̂), θ̂)∇λL(x∗(θ̂),λ∗(x∗(θ̂), θ̂),λ∗(x∗(θ̂), θ̂))

= ∇θL(x∗(θ̂),λ∗(x∗(θ̂), θ̂), θ̂)

= ∇θ
(
f
(
x∗(θ̂), θ̂

)
+

K∑
k=1

λ∗k(x
∗(θ̂), θ̂)gk

(
x∗(θ̂), θ̂

))

= ∇θf
(
x∗(θ̂), θ̂

)
+

K∑
k=1

λ∗k(x
∗(θ̂), θ̂)∇θgk

(
x∗(θ̂), θ̂

)

To grasp the intuition for the ET, think about a simple one-dimensional optimization problem with no constraints:
2

V (θ) = max
x∈R

f(x, θ)

where θ ∈ [0, 1] and f is di�erentiable. If the solution x∗(θ) is di�erentiable, then V (θ) = f (x∗(θ),θ) is di�eren-

tiable. Applying the chain rule, we get:

V ′(θ) =
∂f (x∗(θ),θ)

∂x︸ ︷︷ ︸
=0 (at an optimum)

×∂x
∗(θ)

∂θ
+
∂f (x∗(θ), θ)

∂θ
=
∂f (x∗(θ), θ)

∂θ
.

A change in θ has two e�ects on the value function: (i) a direct e�ect fθ (x∗(θ), θ), and (ii) an indirect e�ect

fx (x∗(θ), θ) ∂x∗(θ)
∂θ

. The ET tells us that under certain conditions, we can ignore the indirect e�ect and focus on the

direct e�ect. In problems with constraints, there is also a third e�ect the change in the constraint set. If constraints

are binding (some λ ’s are positive), this e�ect is accounted for by the ET above.

Example 7.8. Consider the optimization problem:

max
x∈R:2x+2θ≥0

−x2 + x+ 2θ + 2 (86)

For clarity, let f(x; θ) = −x2 + x + 2θ + 2 and g(x; θ) = 2x + 2θ. Clearly, the constraints de�ne a convex set,

i.e., g is concave, and f is concave. f and g are also continuously di�erentiable. Additionally, for all θ ∈ Θ, there exists

x > −θ such that there exists an interior solution. The Lagrangian for the above problem is:

L(x, λ; θ) = x2 − x− 2θ − 2− λ(2x+ 2θ) (87)

2
This simple proof below can be generalized to the constrained case by going through the Lagrangian
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From the KKT stationarity conditions, we obtain:

∂L

∂x
= 2x? − 1− 2λ? := 0 (88)

Solving for the optimal value of the Lagrange multiplier λ?:

λ? = x∗ − 1

2
(89)

We now solve for the optimal variable x∗. Note that without constraints, the objective function achieves a maximum at

x∗ = 1/2:

df

dx
= −2x+ 1 := 0 (90)

x∗ =
1

2
(91)

Since the constraint g requires that x ≥ −θ and f is decreasing for x ≥ 1
2
, the solution function x∗ is given as:

x∗(θ) =

{
1
2

if θ ≥ −1
2

−θ if θ < −1/2
(92)

and the Lagrange multiplier solution function is given by:

λ(x∗(θ), θ) = x∗(θ)− 1

2
(93)

The value function is given by:

V (θ) = f(x∗(θ), θ) (94)

= −x∗(θ)2 + x∗(θ) + 2θ + 2 (95)

=

{
−1

4
+ 1

2
+ 2θ + 2 if θ ≥ −1

2

−θ2 − θ + 2θ + 2 if θ < −1/2
(96)

=

{
9
4

+ 2θ if θ ≥ −1
2

−θ2 + θ + 2 if θ < −1/2
(97)

Hence, by the Envelope theorem, the derivative of the value function for any θ 6= −1
2
is given by:

∂V (θ)

∂θ
=
∂f

∂θ
+ λ(x∗(θ), θ)

(
∂g

∂θ

)
(98)

= 2 + 2

(
x∗(θ)− 1

2

)
(99)

= 2 + 2x?(θ)− 1 (100)

= 1 + 2x?(θ) (101)

=

{
2 if θ ≥ −1

2

1− 2θ if θ < −1
2

(102)

One can easily verify that derivative given by the envelope theorem is exactly equal to the derivative we could calculate

by di�erentiating eq. (97). A 2D and 3D geometric animation of these functions can be found here and here.

[Deni: Add integral envelope theorem]
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8 Gradient Descent
In this section, we assume that we are dealing with a minimization problem whose objective function is dif-

ferentiable and convex.

8.1 Unconstrained Optimization
We �rst study solving unconstrained minimization problems of the following type using gradient descent:

min
x∈Rn

f(x) (103)

where we assume that f : Rn → R is a di�erentiable and convex function.

Gradient descent is an iterative method de�ned as follows:

x(t) = x(t− 1)− γt∇xf(x(t− 1)) ∀t = 1, . . . (104)

∀x(0) ∈ Rn
(105)

8.1.1 Smooth Objective

We will prove the following result regarding the convergence properties of gradient descent:

Theorem 8.1. Suppose the function f : Rn → R in (103) is convex and di�erentiable, and∇xf(x) is L-Lipschitz
(i.e., ∀x,y ∈ Rn, ‖|∇xf(x)−∇xf(y)||≤ L||x− y||). Let x∗ ∈ Rn

be the minimizer of f . Then, if we run the

process in (104) up to time t, with ∀t = 1, . . . , γt = 1
L
, the process will yield a solution f(x(t)) which satis�es:

f(x(t))− f(x∗) ≤ L
||x(0)− x∗||

2t
(106)

We de�ne the rate of convergence of an iterative process as a function τ(t) that satis�es f(x(t))− f(x∗) =
O(τ(t)). Intuitively, an implication of the above result is that gradient descent is guaranteed to converge and that

it converges with rate O
(

1
t

)
Proof. The assumption that ∇xf is L-Lipschitz continuous implies that ∇2

xf ≤ LI , where ∇2
xf is the Hessian of

f , and I is the identity matrix. We can then use a taylor expansion of f around x to approximate any f(y):

f(y) ≤ f(x) +∇xf(x)T (y − x) +
1

2
(y − x)T∇2

xf(x)(y − x) (107)

≤ f(x) +∇xf(x)T (y − x) +
1

2
L(y − x)TI(y − x) (108)

= f(x) +∇xf(x)T (y − x) +
1

2
L||y − x||2 (109)

Plugging y = x(t+ 1) and x = x(t), we get the following:

f(x(t+ 1)) ≤ f(x(t)) +∇xf(x(t))T (x(t+ 1)− x(t)) +
1

2
L||x(t+ 1)− x(t)||2 (110)

= f(x(t)) +∇xf(x(t))T (x(t)− γt∇xf(x(t))− x(t)) +
1

2
L||x(t)− γt∇xf(x(t))− x(t)||2 (111)

= f(x(t))−∇xf(x(t))Tγt∇xf(x(t)) +
1

2
L||γt∇xf(x(t))||2 (112)

= f(x(t))− γt||∇xf(x(t))||2+
1

2
∇2
xLγ

2
t ||∇xf(x(t))||2 (113)

= f(x(t))− (1− 1

2
γtL)γt||∇xf(x(t))||2 (114)
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Since γt = 1
L

, we know that −(1− 1
2
γtL) = −1

2
, which then gives us:

f(x(t+ 1)) ≤ f(x(t))− 1

2
γt||∇T

xf(x(t))||2 (115)

Since γt||∇xf(x(t))||2 is always strcitly positive unlessx(t) = x∗ this inequality implies that gradient descent

converges to the optimal value of the minimand since at each iteration it strictly decreases.

Next, we bound the value of f(x(t+ 1)). First note by convexity, we have:

f(x∗) ≥ f(x(t)) +∇xf(x(t))T (x∗ − x(t)) (116)

f(x(t)) ≤ f(x∗) +∇xf(x(t))T (x(t)− x∗) (117)

Plugging this into 115, we obtain:

f(x(t+ 1)) ≤ f(x∗) +∇xf(x(t))T (x(t)− x∗)− 1

2
γt||∇xf(x(t))||2

(118)

f(x(t+ 1))− f(x∗) ≤ 1

2γt

(
2γt∇xf(x(t))T (x(t)− x∗)− γ2

t ||∇xf(x(t))||2
)

(119)

f(x(t+ 1))− f(x∗) ≤ 1

2γt

(
2γt∇xf(x(t))T (x(t)− x∗)− γ2

t ||∇xf(x(t))||2−||x(t)− x∗||2+||x(t)− x∗||2
)

(120)

Note that we have the following expansion:

−||x− γt∇xf(x)− x∗|| = −
(
||x(t)− x∗||2−2γt∇xf(x(t))T (x(t)− x∗) + γ2

t ||∇xf(x(t))||2
)

(121)

= γ2
t ||∇xf(x(t))||2+2γt∇xf(x(t))T (x(t)− ||x(t)− x∗||2 (122)

Going back to equation 120, we get:

f(x(t+ 1))− f(x∗) ≤ 1

2γt

(
||x(t)− x∗||2−||x(t)− γt∇xf(x)− x∗||

)
(123)

=
1

2γt

(
||x(t)− x∗||2−||x(t+ 1)− x∗||

)
(By de�nition of x(t+ 1)) (124)

Since this inequality holds between any consecutive time periods, we can sum the change in the value of f
the �rst T iterations:

T−1∑
t=0

f(x(t+ 1))− f(x∗) ≤
T−1∑
t=0

1

2γt

(
||x(t)− x∗||2−||x(t+ 1)− x∗||

)
(125)

=
1

2γt

(
||x(0)− x∗||2−||x(T )− x∗||

)
(126)

=
1

2γt

(
||x(0)− x∗||2

)
(127)

Since f is strictly decreasing on each iteration, we have:

T−1∑
t=0

f(x(t+ 1))− f(x∗) ≥ T (f(x(T ))− f(x∗)) (128)

We can then conclude:

f(x(T ))− f(x∗) ≤ ||x(0)− x∗||2

2γtT
= L
||x(0)− x∗||2

2T
(129)

An implication of the above theorem is that we achieve an x(t) that is at an ε distance from the minimum in

O
(

1
ε

)
. Such a bound is called a sub-linear convergence bound.
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8.1.2 Strongly Convex and Smooth Objective

It turns out we can achieve an even better bound if our objective function is both Lipschitz smooth and strongly

convex:

Theorem 8.2. Let f be L-Lipschitz smooth andm-strongly convex. Let x∗ ∈ Rn
be the minimizer of f . Then, if

we run the process in (104) up to time t, with ∀t = 1, 2, . . . , γt = 1
L
, then for any iterate x(t), the following holds:

||x(t)− x∗||≤
(

1− m

L

)t
||x(0)− x∗|| (130)

Proof.

||x(t)− x∗|| = ||x(t− 1)− γt∇xf(x(t− 1))− x∗|| (131)

= ||x(t− 1)− x∗||2−2γt∇xf(x(t− 1))T (x(t− 1)− x∗) + γ2
t ||∇xf(x(t− 1))||2 (132)

Note that from strong convexity we have:

f(y) ≥ f(x) +∇xf(y)(x− y) +
m

2
||y − x|| (133)

≥ f(x)−∇xf(y)(y − x) +
m

2
||y − x|| (134)

Plugging y = x(t− 1) and x = x(t), we get:

f(x(t− 1)) ≥ f(x(t))−∇xf(x(t− 1))(x(t− 1)− x(t)) +
m

2
||x(t− 1)− x(t)|| (135)

Re-organizing this expression we get:

f(x(t− 1))− f(x(t))− m

2
||x(t− 1)− x(t)||≥ −∇xf(x(t− 1))(x(t− 1)− x(t)) (136)

Multiplying both sides by 2γt, we get:

2γtf(x(t− 1))− 2γtf(x(t))−mγt||x(t− 1)− x(t)||≥ −2γt∇xf(x(t− 1))(x(t− 1)− x(t)) (137)

Going back to 132 and using the above, we get:

||x(t)− x∗|| = ||x(t− 1)− x∗||2−2γt∇xf(x(t− 1))T (x(t− 1)− x∗) + γ2
t ||∇xf(x(t− 1))||2 (138)

≤ (1− γtm)||x(t− 1)− x∗||2−2γt (f(x(t− 1))− f(x(t))) + γ2
t ||∇xf(x(t− 1))||2 (139)

Furthermore, we know that for any L-smooth function f, we have ∀x, f(x)− f(x∗) ≤ 1
2L
||∇xf(x)||2 which

then gives us:

||x(t)− x∗|| ≤ (1− γtm) ||x(t− 1)− x∗||2−2γt (f(x(t− 1))− f(x(t))) + 2γ2
tL (f(x)− f(x∗)) (140)

= (1− γtm) ||x(t− 1)− x∗||2−2γt(1− γtL) (f(x)− f(x∗)) (141)

=
(

1− m

L

)
||x(t− 1)− x∗||2−2

1

L

(
1− L

L

)
(f(x)− f(x∗)) (142)

=
(

1− m

L

)
||x(t− 1)− x∗||2 (143)

Unrolling the left hand side as above up to time t = 0, we obtain the desired result.

An implication of the above theorem is that we achieve an x(t) that is at an ε distance from the minimum in

O
(
log
(

1
ε

))
. Such a bound is called a linear convergence bound.
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8.2 Constrained Optimization
In this section, we study the optimization problems of the following type:

min
x∈X

f(x) (144)

where we assume that f : Rn → R is a di�erentiable and convex function and X is a convex set.

The projection of a point y onto a set X , is de�ned as:

ΠX(y) = arg min
x∈X

||x− y||2 (145)

We now introduce projected gradient descent which allows us to solve optimization problems with con-

straints as in 144:

x(t) = x(t− 1)− ΠX (x(t− 1)− γt∇xf(x(t− 1))) ∀t = 1, . . . (146)

∀x(0) ∈ X (147)

We now introduce convergence results regarding projected gradient descent. We skip the proofs as they are

similar to those for gradient descent modulo the projection operator.

Theorem 8.3. Suppose the function f : Rn → R in (144) is convex and di�erentiable, and∇xf(x) is L-Lipschitz.
Let x∗ ∈ Rn

be the minimizer of f . Then, if we run the process in (146) up to time t, with ∀t = 1, . . . , γt = 1
L
,

the process will yield a solution f(x(t)) which satis�es:

f(x(t))− f(x∗) ≤ 2L
||x(0)− x∗||

t
(148)

Theorem 8.4. Let f be L-Lipschitz smooth andm-strongly convex. Let x∗ ∈ Rn
be the minimizer of f . Then, if

we run the process in (146) up to time t, with ∀t = 1, 2, . . . , γt = 1
L
, then for any iterate x(t), the following holds:

||x(t)− x∗||≤ (1− m

L
)t||x(0)− x∗|| (149)
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9 Subgradient Methods
So far we have considered only optimization problems with di�erentiable objectives. In this section, we intro-

duce the tools to solve optimization problems with objective functions that are not necessarily di�erentiable.

9.1 Subgradient Descent
Consider the optimization problem:

min
x∈Rn

f(x) (150)

where f is a convex function that is not necessarily di�erentiable.

The conventional method to solve the above problem is the subgradient method:

x(t) = x(t− 1)− ηth(t− 1) t = 0, 1, . . . (151)

x(0) ∈ V (152)

where h(t) ∈ ∂x and ηt is the learning rate at time t.
The subgradient method is not a descent method and as a result the last iterate might not be the best estimate

of the minimizer of f . As a result, the subgradient method requires us to keep track of the best iterate x
(T )
best up to

time T . That is:

x
(T )
best = arg min

t∈[T ]

f(x(t)) (153)

Theorem 9.1. Consider the iterative process 169. Let f be a convex function f : Rn → R that is L-Lipschitz and

h(t) ∈ ∂xf(x(t)). Let x∗ be the minimizer of f . Assume that the step sizes γt satisfy the following:

t∑
k=1

γ2
k ≤ ∞

t∑
k=1

γk =∞ (154)

Then, we have:

lim
k→∞

f(x
(k−1)
best ) = f(x∗) (155)

furthermore, the following convergence bounds hold:

f(x
(k−1)
best )− f(x∗) ≤ ||x(0)− x∗||2+L2

∑t
k=1 γ

2
k

2
(∑t

k=1 γk
) (156)

≤ L||x(0)− x∗||√
t

(157)

Proof.

||x(t)− x∗|| = ||x(t− 1)− γth(t− 1)−−x∗||2 (158)

= ||x(t− 1)− x∗||2−2γth(t)T (x(t− 1)− x∗) + γ2
t ||h(t− 1)||2 (159)

≤ ||x(t− 1)− x∗||2−2γt(f(x(t− 1))− f(x∗)) + γ2
t ||h(t− 1)||2 (160)
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where the last inequality was derived from the de�nition of the subgradient. Applying the inequality above

recursively, we obtain:

||x(t)− x∗||≤ ||x(0)− x∗||2−
t∑

k=1

2γk(f(x(k − 1))− f(x∗)) +
t∑

k=1

γ2
k||h(k − 1)||2 (161)

Since ||x(t)− x∗||≥ 0 and let ||x(0)− x∗||= R, for clarity, we have:

t∑
k=1

2γk(f(x(k − 1))− f(x∗)) ≤ R2 +
t∑

k=1

γ2
k||h(k − 1)||2 (162)

Note that we have:

t∑
k=1

γk(f(x(k − 1))− f(x∗)) ≥

(
t∑

k=1

γk

)
min
k

(f(x(k − 1))− f(x∗)) (163)

=

(
t∑

k=1

γk

)
(f(x

(k−1)
best )− f(x∗)) (164)

Hence, we get the following bound:

f(x
(k−1)
best )− f(x∗) ≤ R2 +

∑t
k=1 γ

2
k||h(k − 1)||2

2
(∑t

k=1 γk
) (165)

Since f is L-Lipschitz, we know that ||h(k − 1)||≤ L, which gives u:

f(x
(k−1)
best )− f(x∗) ≤ R2 + L2

∑t
k=1 γ

2
k

2
(∑t

k=1 γk
) (166)

Since we assumed that:

t∑
k=1

γ2
k ≤ ∞

t∑
k=1

γk =∞ (167)

as t→∞, limk→∞ f(x
(k−1)
best ) = f(x∗)

9.2 Projected Subgradient Methods
The subgradient method presented in the previous section can be extended to constrained optimization prob-

lem with non-di�erentiable objective functions.

Consider the optimization problem:

min
x∈X

f(x) (168)

where f is a convex function that is not necessarily di�erentiable and X is a convex set.
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The conventional method to solve the above problem is the subgradient method:

x(t) = x(t− 1)− ΠX (x(t− 1)− ηth(t− 1)) t = 1, 2, . . . (169)

x(0) ∈ V (170)

where h(t) ∈ ∂xf(x(t)), ΠX is the projection operator onto the set X and ηt is the learning rate at time t. It

turns out that the convergence bound for projected subgradient descent is the same as the convergence bound for

subgradient descent.
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10 The Proximal Gradient Method
10.0.1 The Proximal Operator

Given a function f : E → (−∞,∞], the proximal mapping is the operator prox given by:

proxf (x) = arg min
u∈E

{
f(u) +

1

2
‖u− x‖2

2

}
(171)

The proximal operator essential returns the minimizer of a regularized version of the function f .

Example 10.1. Consider f : R→ (−∞,∞] s.t. f(x) = 0, then

proxf (x) = arg min
u∈R

{
f(u) +

1

2
‖u− x‖2

2

}
= arg min

u∈R

{
1

2
‖u− x‖2

2

}
= {x}

Example 10.2. Consider f : R → (−∞,∞] s.t. f(x) = IC , where IC is the indicator function of some set C ⊂ R,
then

proxf (x) = arg min
u∈R

{
IC(u) +

1

2
‖u− x‖2

2

}
= arg min

u∈C

{
1

2
‖u− x‖2

2

}
= ΠC(x)

Example 10.3. Consider the functions:

f1 =

{
0 x 6= 0
−1/2 x = 0

f2 =

{
0 x 6= 0

1/2 x = 0

To compute the proximal of f1, note that proxf1(x) = arg minu∈R f̃1(u, x), where

f̃1(u, x)
.
= f1(u) +

1

2
(u− x)2 =

{
1
2
(x2 − 1), u = 0

1
2
(u− x)2, u 6= 0

which allows us to compute the proximal of f1 as:

proxf1(x) =


{0} |x|< 1
{x} |x|> 1
{0, x} |x|= 1

To compute the proximal of f2, note that proxf2(x) = arg minu∈R f̃2(u, x), where

f̃2(u, x)
.
= f2(u) +

1

2
(u− x)2 =

{
1
2
(x2 + 1), u = 0

1
2
(u− x)2, u 6= 0

A similar argument shows that:

proxf2(x) =

{
{x} x 6= 0

∅[Amy : ill-de�ned] x = 0

Consider a function f : E → [−∞,∞]. f is said to be a proper function if:

f(x) > −∞ ∀x ∈ E (172)

and

f(x) <∞ ∃x ∈ E (173)

That is, a convex function is proper if never takes a negative in�nite value and its e�ective domain [Amy: please

de�ne!] is non-empty, i.e., dom(f) 6= ∅.
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Theorem 10.4 (First Prox Theorem). Let f : E → (−∞,∞] be a proper closed and convex function. Then,

proxf (x) is a singleton for any x ∈ E.

Proof. Let f̃(x,u) = f(u) + 1
2
‖u− x‖2

2, then proxf (x) = arg minu∈E f̃(x,u). Note that f̃(x,u) is strongly

convex in u since it is the sum of a closed function and strongly convex function. This means that f̃(x,u) is

strictly convex in u, which implies that proxf (x) = arg minu∈E f̃(x,u) is singleton valued for all x ∈ E.

As we will consider mostly closed and convex functions, from now on we will assume that proxf is a vector-

valued function, rather than a set-valued mapping, i.e., we will write proxf (x) = y rather than proxf (x) = {y}.
A function f : E → (−∞,∞] is said to be coercive if f(x)→∞ as ‖x‖ → ∞.

Theorem 10.5. Let f : E → (−∞,∞] be a proper closed function such that f̃(x,u) = f(u) + 1
2
‖u− x‖2

2 is

coercive in u for all x ∈ E. Then proxf (x) is non-empty for all x ∈ E.

Proof. f̃(x,u) is closed since it is the sum of two closed functions. Since f̃(x,u) is coercive and closed in u, its

minimum always exists.

An illustration of the above theorem can be found in example 10.3.

Corollary 10.6. Let f : E → (−∞,∞] be a continuous function, then proxf (x) is non-empty for all x ∈ E.

We summarize in the table below closed form expression for the proximal operators of important classes of

functions:

f proxf (x)
c x
〈a,x〉+ b x− a
1/2xTAx+ bTx+ c (A+ I)−1(x− b)

We also note the following proximal calculus rules, which can allow one to derive closed form expressions

for complicated functions. A more complete review of these rules and more closed form expressions for proximal

operator can be found here.
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Figure 8: Summary of proximal calculus rules

We now introduce an important result regarding the proximal operator.

Theorem 10.7 (Second Prox Theorem). Let f : E → (−∞,∞] be a proper closed and convex function. Then

for any x,v ∈ E, the following three claims are equivalent:

1. v = proxf (x)

2. x− v ∈ ∂f(v)

3. 〈x− v,y − v〉 ≤ f(y)− f(v) for any y ∈ E

Proof. By de�nition, v = proxf (x) if and only if

v = arg min
u

{
f(u) +

1

2
‖u− x‖2

}
,

which, by the KKT optimality conditions theorem 7.3 and the sum rule of subdi�erential calculus, is equivalent to

the relation

0 ∈ ∂f(v) + v − x

We have thus shown the equivalence between claims (i) and (ii). Finally, by the de�nition of the subgradient, the

membership relation of claim (ii) is equivalent to (iii).

An important consequence of the above theorem is that minimizing proxf is equivalent to minimizing f . The

above theorem allows us to show that the proximal operator is non-expansive:

Theorem 10.8. Let f be a proper closed and convex function. Then for any x,y ∈ E,
(a) (�rm nonexpansivity) 〈

x− y, proxf (x)− proxf (y)
〉
≥
∥∥proxf (x)− proxf (y)

∥∥2
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(b) (nonexpansivity) ∥∥proxf (x)− proxf (y)
∥∥ ≤ ‖x− y‖.

Proof. (a) Denoting u = proxf (x),v = proxf (y), by the equivalence of (i) and (ii) in the second prox theorem

(Theorem 6.39), it follows that

x− u ∈ ∂f(u),y − v ∈ ∂f(v)

Thus, by the subgradient inequality,

f(v) ≥ f(u) + 〈x− u,v − u〉,
f(u) ≥ f(v) + 〈y − v,u− v〉.

Summing the above two inequalities, we obtain

0 ≥ 〈y − x+ u− v,u− v〉

which is the same as

〈x− y,u− v〉 ≥ ‖u− v‖2

that is, 〈
x− y, proxf (x)− proxf (y)

〉
≥
∥∥proxf (x)− proxf (y)

∥∥2

(b) If proxf (x) = proxf (y), then the inequality is obvious. Assume that proxf (x) 6= proxf (y). Using (a) and the

Cauchy-Schwarz inequality, it follows that∥∥proxf (x)− proxf (y)
∥∥2 ≤ 〈proxh(x)− proxh(y),x− y〉
≤ ‖proxh(x)− proxh(y)‖ · ‖x− y‖.

Dividing by ‖proxh(x)− proxh(y)‖, the desired result is established.

The following identity given by the Moreau Decomposition theorem holds for the proximal of a function f
and its conjugate f ?:

Theorem 10.9 (Moreau Decomposition). Let f : E → (−∞,∞] be proper closed and convex. Then for any

x ∈ E,
proxf (x) + proxf?(x) = x

Proof. Let x ∈ E and denote u = proxf (x). Then by the equivalence between claims (i) and (ii) in the second prox

theorem theorem 10.7, it follows that x − u ∈ ∂f(u), which by the conjugate subgradient theorem (theorem 3.1)

is equivalent to u ∈ ∂f ∗(x − u). Using the second prox theorem again, we conclude that x − u = proxf?(x).
Therefore

proxf (x) + proxf?(x) = u+ (x− u) = x

Facts about the proximal operator can be used to guarantee the existence of a well-de�ned smoothed version

of any function f called the Moreau envelope which has the same minimizers as f . Given a proper closed convex

function f : E→ (−∞,∞] and µ > 0, the Moreau envelope of f is the function

Mµ
f (x) = min

u∈E

{
f(u) +

1

2µ
‖x− u‖2

}
The parameter µ is called the smoothing parameter. By the �rst prox theorem (theorem 10.4), the minimization

problem of the Moreau envelope has a unique solution, given by proxµf (x).
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10.0.2 Proximal Gradient Descent

Consider the following unconstrained problem:

min
x∈Rn

f(x) = g(x) + h(x) (174)

where g : Rn → R is convex and di�erentiable and h : Rn → R is closed, convex, and possibly non-

di�erentiable.

The proximal gradient algorithm is given as follows:

x(t) = proxηth (x(t− 1)− ηt∇g(x(t− 1))) ∀t ∈ N+ (175)

x(0) ∈ Rn
(176)

where ∀t ∈ N+, ηt > 0 is a variable learning rate.

Note that we can re-write the proximal gradient update step as:

x(t) = arg min
u∈Rn

{
h(u) +

1

2ηt
‖u− x(t− 1) + ηt∇xg(x(t− 1))‖2

2

}
(177)

= arg min
u∈Rn

{
h(u) + g(x(t− 1)) +∇xg(x(t− 1)) (u− x(t− 1)) +

1

2ηt
‖u− x(t− 1)‖2

2

}
(178)

That is, x(t) minimizes h(u) plus a simple quadratic model of g(u) around x.

Note that when h = 0 we recover gradient descentm and when h = IC , i.e., the indicator function of some set

C ⊂ Rn
, we recover projected gradient descent.

The following convergence result holds for the proximal gradient method:

Theorem 10.10. Consider the unconstrained optimization problem in eq. (174). Suppose that∇xg(x) is Lipschitz
continuous with constant L > 0, for all t ∈ N+, ηt = 1

L
, and that the minimum value of minx∈R f(x) is attained

at x? (not necessarily unique), then the following convergence bound holds:

f(x(t))− f(x?) ≤ O

(
1

t

)
(179)
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