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In the wake of the Second World War, as they presided over major public expenditure

reforms, European and American governments supported the development of rigorous

mathematical models of economies to guide economic policy. Over the next two decades,

general equilibrium models (or Walrasian economies) emerged as the dominant framework.

However, as these models were often analytically intractable, as early as the 1960s, a group

of researchers led by Herbert Scarf turned their attention to finding “a general method for

the explicit numerical solution of [general equilibrium models].” While some methods had

limited success in solving simple models, 50 years later, a general method for computing

solutions to more complex models remains elusive. Nevertheless, these models—and

their often inaccurate solution methods—continue to be widely used in applications such

as resource allocation and public policy analysis, raising concerns about the impact of

inaccurate solutions on the public good. This thesis addresses this issue by leveraging tools

from computer science and game theory to analyze algorithms for general equilibrium

models.

The first part of this thesis focuses on variational inequalities (VIs), a mathematical modeling

paradigm, and their application to Walrasian economies (i.e., models driven by demand and

supply). The second part of this thesis concerns pseudo-games, a multiagent optimization

framework, and their application to Arrow-Debreu economies (i.e., Walrasian economies

in which demand and supply are generated by consumers and firms). The final part of this

thesis concerns Markov pseudo-games, a multiagent stochastic optimization framework,

and their application to Radner economies (i.e., a generalization of Walrasian and Arrow-

Debreu economies that explicitly model time and uncertainty). While Parts 1 and 2 of this

thesis resolve Scarf’s challenge by solving general equilibrium models developed during

his lifetime, Part 3 merely scratches the surface of a new research direction. Above all, it

raises an exciting and contemporary analog to Scarf’s challenge at the intersection of deep

learning, reinforcement learning, and mathematical economics—namely, finding a general

method for the explicit numerical solution of Radner economies.
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Denizalp Göktaş holds dual Bachelor of Arts degrees in Computer Science & Statistics

from Columbia University, and in Political Science & Economics from the Paris Institute of

Political Studies (Sciences Po). In 2019, he began his doctoral studies in Computer Science

at Brown University, where he also earned a Master of Science en route to his Ph.D. During

his Ph.D., he was a Visiting Scholar at the Simons Institute for the Theory of Computing, a

Research Scientist Intern with Google DeepMind’s Game Theory and Multiagent team, and

a Research Scientist Intern at JPMorgan Chase & Co.’s Multiagent Learning and Simulation

Research Lab. He was awarded the JP Morgan AI Fellowship in 2022. Denizalp co-founded

the Workshop on Foundation Models, LLMs, and Game Theory (2023) and the Workshop

on Computational Methods for Economic Dynamics (2024).

During his Ph.D., he has published the following papers: BoLT: Building on Local Trust to

Solve Lending Market Failure (Goldstein et al., 2020); A Consumer-Theoretic Characterization of

Fisher Market Equilibria (Goktas et al., 2022a); Convex-Concave Min-Max Stackelberg Games

(Goktas and Greenwald, 2021); Gradient Descent Ascent in Min-Max Stackelberg Games (Gok-

tas and Greenwald, 2022c); Robust No-Regret Learning in Min-Max Stackelberg Games (Goktas

and Greenwald, 2022a); An Algorithmic Theory of Markets and their Application to Decentralized

Markets (Goktas, 2022); Zero-Sum Stochastic Stackelberg Games (Goktas et al., 2022c); Ex-

ploitability Minimization in Games and Beyond (Goktas and Greenwald, 2022b); Fisher Markets

with Social Influence (Zhao et al., 2023); Tâtonnement in Homothetic Fisher Markets (Goktas

et al., 2023c); Convex-Concave Zero-Sum Stochastic Stackelberg Games (Goktas et al., 2023b);

Generative Adversarial Equilibrium Solvers (Goktas et al., 2023a); Banzhaf Power in Hierarchical

Games (Randolph et al., 2024); STA-RLHF: Stackelberg Aligned Reinforcement Learning with

Human Feedback Authors (Makar-Limanov et al., 2024); Efficient Inverse Multiagent Learning

(Goktas et al., 2024).

iii



I pursued this thesis as one pursues a work of art.

Dedicated to my mother Deniz
whose love turns the heartlines in my hands into golden threads of fate.

Thank you for everything.

iv



ACKNOWLEDGMENTS

One thing my PhD never lacked was adventure. My journey started in the midst of a global

pandemic and took me from San Francisco to Berlin, Vienna, London, and Paris, giving me

the privilege of spending time with brilliant researchers at the Simons Institute, Google

DeepMind, and JP Morgan.

The architect of these opportunities was, without a doubt, my advisor Amy Greenwald.

Amy, the woman you are! Compliments would not do you justice, so I’ll spare you them.

During my first year, the day after a dramatic encounter in the CIT elevator, you said,

“Perhaps it’s not a coincidence that they call the PhD defense a viva in the UK—your task is

to defend your research with your life!” I carried those words with me for the rest of my

PhD. The only word I can find to describe the last six years together is wild, and I am sure

we would not have it any other way. Thank you for listening to me and for caring about

what I had to say; it is the greatest gift one can receive. I will forever carry the memories

and lessons of our almost religious, hours-long conversations on game theory; our long

walks through New York, Berkeley, London, New Haven, and Providence; you grilling

me in our reading group meetings; and the exacting paper submission deadlines we faced

together. At the start of my PhD, I had one idea of what the advisor-advisee relationship is and

should be, now at the end of it, I see that I got that and everything more. Thank you, thank you for

everything.

The inspiration behind my first research projects on general equilibrium were the works of

Richard Cole, Yun Kuen (Marco) Cheung, Simina Brânzei, and Christian Kroer. Few people

remain in the world with the attention span to catch a mathematical error in Equation

132 of a 50-page paper; Richard and Marco are among them. Thank you for being the

trailblazers, giving me endless feedback, and inspiring me to be a better researcher. I wrote

every single word in this thesis thinking, “what would Richard think”? Simina, thanks

for the numerous chats at Berkeley, hearing your stories, and seeing your passion for

research take you all around the world is an inspiration. Christian, thank you for spending

v



time on my committee, we did not get a chance to work closely, but knowing how highly

your students speak of you, it speaks volumes to how we should have. At this point, I

should also acknowledge two other committee members who have generously joined the

committee for this thesis, Yu Cheng and Geoffrey Gordon. Thank you for your time, efforts,

and interest in my growth, I am grateful.

I would not have applied to a PhD program if it weren’t for two people: Seth Goldstein

and Ryan Zohar. Seth, in many ways, this thesis was written to answer the very questions

we sought to explore in that first-ever research project we started together. Thank you for

inspiring me—without you, I would never have had the chance to write it, and for that, I

am deeply grateful. Ryan, my curious friend, your passion for learning, your desire for

discovery, and your encouragement to apply for the PhD are why I pursued it in the first

place. I cannot wait to see where life takes us.

One of the most exciting opportunities in my life was working at DeepMind in London

right after the pandemic. I owe this opportunity to two people: Andrea Tacchetti and

Kalesha Bullard. Andrea, thank you for giving me the chance to work with you—I am

forever indebted. Your kindness, patience, brilliance, and resilience in expanding into new

research horizons, whether you realize it or not, have taught me invaluable lessons that

I carry with me. Thank you. Kalesha, thank you for preparing me for my interviews, for

the time spent together in London’s restaurants and markets, and for sharing your stories

with me. You are a treasure. You must know that Minae and I refer to you as the icon, and I

know you know you are one.

Once I arrived at DeepMind, an incredibly talented group of researchers became my

champions: David Parkes, Guy Lever, Ian Gemp, Georgios Piliouras, Luke Marris, Yoram

Bachrach, Romuald Élie, Minae Kwon, Robert Lange, Evgenii Nikishin, and Chris Lu.

David, thank you for supporting my growth and taking an interest in my research. But

most importantly, thank you for being a resilient role model—you should know it means

the world to me. Guy, my rock, your sense of humor, your perspective on the world, and

vi



your steadfast sense of identity made me feel at home at DeepMind. Thank you. Ian, of

all the researchers I have met, you are the one with the purest and most genuine love for

research. Learning from you and sharing ideas with you was an immense and inspiring

experience. Thank you. Georgios, your research creativity, and desire to explore topics at

the edge of the field has inspired much of this thesis starting from Berkeley all the way to

London, thank you for sharing your ideas and inspirations with me. Luke, you taught me

so much about machine learning engineering—thank you for your tireless help. Yoram and

Romuald, thank you both for the many hours spent chatting with me, pointing me toward

exciting research directions, and supporting me at DeepMind. Minae, you brilliant, noble,

and extraordinary woman, I am so grateful to know you and call you my friend. Robert,

you loving man, in another life, I know we were together. Evgenii, dreamer, keep sailing

toward new horizons—you will only continue to blossom. Chris, kind soul, I am excited to

see the great things you will build.

Once back in Providence from London, two talented and resilient researchers from Caltech

reached out to me with a question about a paper not included in this thesis: Apurva

Badithela and Josefine Graebener. This led to a two-year collaboration on a fascinating

project using game theory to solve automated test design. Apurva and Josefine, thank you

for sharing your ideas with me and for teaching me about your field.

Before leaving Providence for London to join DeepMind, I was awarded a JP Morgan AI

fellowship and put in touch with Sumitra Ganesh to be her mentee. Back from DeepMind, I

was hoping to do research at a place with a focus on economics. So, I reached out to Sumitra

to ask if I could join her team of researchers for the summer, and she kindly agreed. Sumitra,

thank you for giving me research freedom and supporting my research, I am grateful. At

JP Morgan, my greatest champion was my research mentor Alec Koppel. Alec, you and the

world, knows you are a brilliant and prolific researcher, but to me what mattered was your

love for life, your support for those you mentor, and your unbeatable small-talk game. The

paper we wrote at JP Morgan was not included in this already far-too-long thesis, but it was

vii



a paper I had dreamed of writing for a very long time, and I believe it is one of the most

important papers I published in my PhD. Thank you for trusting my vision, and supporting

this research with no hesitation even in the face of setbacks, you are a role-model. At JP Morgan, I

worked with other brilliant researcher: Sujay Bhatt, Alan Mishler, Kevin Stanghl, Thomas

Cook.

Once I left JP Morgan, I set my sights on accomplishing the dream I entered grad school

with: building economic simulations with general equilibrium theory. With the goal to find

the right literature, I learned more about macroeconomics and stumbled on the works of

two great economists: Jesse Perla and Adrien Auclert. Jesse, thank you for caring, being

open to listen to and read my ideas. It meant a lot to me at a moment where I felt all alone

trying to make sense of the literature. Adrien, thank you for giving me the opportunity to

participate in your NBER workshop on Heterogeneous-Agent Macroeconomics, I know non-

economists rarely get the chance to do so. Learning about your research and communities

was pivotal in concluding the final part of this thesis. I am hopeful that in the near future,

computer scientists and economists, will join their forces to solve pressing macroeconomic

problems.

In the midst of the never-ending cycle of paper submissions, I was fortunate to meet a

brilliant and unique student who has become my greatest supporter and research partner,

Sadie Zhao. Sadie, I cannot believe it has been four years since we met! Seeing you grow

from an undergraduate interested in research to a PhD student with a research agenda,

and now a friend, has been such a joy. Your future is bright, dream on, and reach for the stars!

The last part of this thesis was a collaboration with Sadie, Amy, and most importantly

Sadie’s PhD advisor Yiling Chen. Yiling, thank you for trusting our vision with Sadie and

supporting this research; this was one of the most challenging research projects I have

undertaken, and your support meant so much to me. I am so happy to know Sadie is

getting advised by someone she can look up to and get inspired by.

viii



In my years at Brown, I was lucky to spend time with a number of PhD students: Brandon

Woodard, Enrique Areyan, Arjun Prakash, and Kevin Wang. Brandon, thank you for the

memories and the experiences, I cannot wait to see the things you will do. Enrique, thank

you for helping me transition to Brown. Arjun, thank you for the countless hours we have

spent working together, I am excited to see the great places life takes you. Kevin, I only

wish we could have spent more time, but I trust our paths will cross again.

There was also a very special PhD student: Lucy Qin. Lucy, my kind, beautiful, free, and

brilliant partner in crime. I do not know how I would have done this PhD without you.

You have been with me on my hardest and happiest days, from Fox Point, Providence, to

Chinatown, New York, to Miami Beach, Miami. People like you, and a friendship like ours

come once in a lifetime. You have been one of the greatest finds of this journey.

Beyond the support I have received from people I met during my PhD, I am eternally

grateful for the support of three groups of people. Chief amongst them, my friends: Eric

Deng, Roysi Eskenazi, Timur Emre Civan, Audrey Everist, Lisa Inzerillo, Sebastian Torero,

Rebecca Vitenzon.

The second group of people are the high school teachers who allowed me to get to where I

am: Hélène Jousselin, Ayşin Dülger, Connie Pierce, and Christopher Conley.

Last, and finally, I am so grateful for the administrators at Brown, who did their best to get

us through the Kafkaesque academic bureaucracy and logistical challenges: Lauren Clarke,

Jesse Polhemus, and John Tracey-Ursprung.

ix



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Scope and Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Historical and Academic Context . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5.1 General Equilibrium Theory: The Foundations of Economic Modeling 12

1.5.2 General Equilibrium Theory at the Origin of Mechanism Design . . 20

2 Mathematical Background 24

2.1 Too Long; Did Not Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.2 Mathematical Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Set Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.2 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.3 Correspondences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

x



2.2.4 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.5 Cardinality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.6 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.7 Infinite Cartesian Product . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Normed Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5 Inner Product Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.6 Measure and Probability Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.7 (Sub)differential Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.8 Primitive Function Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.9 Constrained Optimization Background . . . . . . . . . . . . . . . . . . . . . 54

2.9.1 The Primal Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.9.2 The Lagrangian and the Dual Problem . . . . . . . . . . . . . . . . . 55

2.9.3 Parametric Constrained Optimization . . . . . . . . . . . . . . . . . . 59

I Variational Inequalities and Walrasian Economies 62

3 Scope and Motivation 63

3.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3.1 A Tractable Variational Inequality Framework for Walrasian Economies 69

3.3.2 Variational Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . 71

xi



3.3.3 Walrasian Economies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3.4 Fisher Markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4 Variational Inequalities 75

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1.1 Stampacchia Variational Inequality . . . . . . . . . . . . . . . . . . . 75

4.1.2 Minty Variational Inequality . . . . . . . . . . . . . . . . . . . . . . . 78

4.1.3 Generalized Monotonicity Properties of Variational Inequalities . . . 80

4.2 Algorithms for Variational Inequalities . . . . . . . . . . . . . . . . . . . . . . 81

4.2.1 Computational Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3 First-Order Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3.1 Mirror Gradient Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3.2 Mirror Extragradient Algorithm . . . . . . . . . . . . . . . . . . . . . 86

4.3.3 Local Convergence of Mirror Extragradient . . . . . . . . . . . . . . . 95

4.4 Merit Function Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.4.1 Merit Function Minimization via Second-Order Methods . . . . . . . 104

4.4.2 Mirror Potential Algorithm for VIs . . . . . . . . . . . . . . . . . . . . 111

5 Walrasian Economies 115

5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.2 Walrasian Economies and Variational Inequalities . . . . . . . . . . . . . . . 117

5.2.1 Walrasian Economies and Complementarity Problems . . . . . . . . 117

5.2.2 Balanced Economies and Variational Inequalities . . . . . . . . . . . 119

xii



5.2.3 Competitive Economies and Continuous Variational Inequalities . . 123

5.3 Algorithms for Walrasian Equilibrium . . . . . . . . . . . . . . . . . . . . . . 127

5.3.1 Computational Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.3.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.4 Price Adjustment Processes for Walrasian Equilibrium . . . . . . . . . . . . 132

5.4.1 Computation of Walrasian Equilibrium in Balanced Economies . . . 134

5.4.2 Computation of Walrasian Equilibrium in Variationally Stable Com-

petitive Economies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.4.3 Experiments for Mirror Extratâtonnement Process . . . . . . . . . . . 155

5.5 Merit Function Methods for Walrasian Equilibrium . . . . . . . . . . . . . . 159

5.5.1 Merit Function Minimization via Second-Order Price-Adjustment

Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.5.2 Mirror Potential Algorithm for Walrasian Economies . . . . . . . . . 159

6 Homothetic Fisher Markets 162

6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.1.1 Mirror Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.1.2 Consumer Theory Primer . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.1.3 Fisher Markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.2 Homothetic Fisher Markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.3 Convex Potential Markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.4 Market Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.5 Convergence Bounds for Entropic Tâtonnement . . . . . . . . . . . . . . . . 181

xiii



7 Appendix for Part I 191

7.1 Details of Section 5.4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . 191

7.1.1 Computational Resources . . . . . . . . . . . . . . . . . . . . . . . . . 191

7.1.2 Programming Languages, Packages, and Licensing . . . . . . . . . . 191

7.1.3 Experimental Setup Details . . . . . . . . . . . . . . . . . . . . . . . . 191

7.2 Omitted Results and Proofs from Chapter 6 . . . . . . . . . . . . . . . . . . . 192

II Pseudo-Games and Arrow-Debreu Exchange Economies 215

8 Scope and Motivation 216

8.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

8.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

8.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

8.3.1 Pseudo-Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

8.3.2 Arrow-Debreu Economies . . . . . . . . . . . . . . . . . . . . . . . . . 220

9 Pseudo-games 222

9.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

9.2 Global Solution Concepts and Existence . . . . . . . . . . . . . . . . . . . . . 223

9.2.1 Generalized Nash Equilibrium and Variational Equilibrium . . . . . 223

9.2.2 Quasiconcave Pseudo-Games . . . . . . . . . . . . . . . . . . . . . . . 224

9.2.3 Nash Equilibrium and Generalized Nash Equilibrium Equivalence . 227

9.3 Algorithms for Pseudo-Games . . . . . . . . . . . . . . . . . . . . . . . . . . 230

9.3.1 Computational model . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

xiv



9.3.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

9.4 Computation of GNE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

9.4.1 Uncoupled Learning Dynamics for GNE . . . . . . . . . . . . . . . . 234

9.4.2 Merit Function Methods for GNE . . . . . . . . . . . . . . . . . . . . 240

9.5 Local Solution Concepts and Existence . . . . . . . . . . . . . . . . . . . . . . 248

9.5.1 First-Order and Local Generalized Nash and Variational Equilibrium 248

9.5.2 Smooth Pseudo-Games . . . . . . . . . . . . . . . . . . . . . . . . . . 250

9.5.3 First-Order and Local Equilibrium Equivalence . . . . . . . . . . . . 252

9.6 Computation of First-Order and Local GNE . . . . . . . . . . . . . . . . . . . 254

9.6.1 First-Order Variational Equilibrium and Variational Inequalities . . 254

9.6.2 Uncoupled Learning Dynamics First-Order GNE . . . . . . . . . . . 255

9.6.3 Merit Function Methods for First-Order GNE . . . . . . . . . . . . . 259

10 Arrow-Debreu Economies 262

10.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

10.2 Solution Concepts and Existence . . . . . . . . . . . . . . . . . . . . . . . . . 264

10.3 Computation of Arrow-Debreu Equilibrium . . . . . . . . . . . . . . . . . . 269

10.3.1 Computational Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

10.3.2 Tâtonnement in WARP Arrow-Debreu Economies . . . . . . . . . . . 270

10.3.3 Mirror Extratrade Dynamics in Pure Exchange Economies . . . . . . 273

10.4 Merit Function Methods for Arrow-Debreu Economies . . . . . . . . . . . . 288

10.4.1 Merit Functions for Arrow-Debreu Economies . . . . . . . . . . . . . 288

10.4.2 First-Order Market Dynamics for Merit Function Minimization . . . 290

xv



10.4.3 Second-Order Market Dynamics for Merit Function Minimization . 291

III Markov Pseudo-Games and Radner Economies 292

11 Scope and Motivation 293

11.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

11.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

11.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

12 Markov Pseudo-Games 302

12.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

12.1.1 Mathematical Background . . . . . . . . . . . . . . . . . . . . . . . . 302

12.1.2 Markov Pseudo-Games . . . . . . . . . . . . . . . . . . . . . . . . . . 302

12.2 Solution Concepts and Existence . . . . . . . . . . . . . . . . . . . . . . . . . 306

12.3 Merit Function Minimization for Generalized Markov Perfect Equilibrium . 309

12.3.1 Exploitability Minimization . . . . . . . . . . . . . . . . . . . . . . . . 311

12.3.2 Policy Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . 312

12.3.3 State Exploitability Minimization . . . . . . . . . . . . . . . . . . . . . 314

12.3.4 Algorithmic Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 315

12.3.5 Algorithm and Convergence . . . . . . . . . . . . . . . . . . . . . . . 316

13 Radner Economies 319

13.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

13.1.1 Static Exchange Economies . . . . . . . . . . . . . . . . . . . . . . . . 319

xvi



13.1.2 Radner Economies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

13.1.3 Solution Concepts and Existence . . . . . . . . . . . . . . . . . . . . . 324

13.1.4 Equilibrium Computation . . . . . . . . . . . . . . . . . . . . . . . . . 328

13.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

14 Appendix for Part III 332

14.1 Omitted Results and Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

14.1.1 Omitted Results and Proofs from Chapter 12 . . . . . . . . . . . . . . 332

14.1.2 Omitted Results and Proofs from Section 13.1.3 . . . . . . . . . . . . 343

14.1.3 Omitted Results and Proofs from Section 13.1.4 . . . . . . . . . . . . 346

14.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

14.2.1 Neural Projection Method . . . . . . . . . . . . . . . . . . . . . . . . . 346

14.2.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . 349

14.2.3 Other Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

15 Conclusion 353

15.1 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

15.1.1 Radner Economies and Infinite-Dimensional Walrasian Economies . 355

15.1.2 Walrasian Economies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356

15.1.3 Arrow-Debreu Economies . . . . . . . . . . . . . . . . . . . . . . . . . 357

15.1.4 Fisher Markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

15.1.5 Variational Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . 358

xvii



List of Figures

1.1 Hierarchy of the General Equilibrium Models Studied in this Thesis . . . . 4

1.2 Polynomial-Time Solvable Walrasian Economies. . . . . . . . . . . . . . . . . 15

1.3 Summary of Known Results in Fisher Markets. . . . . . . . . . . . . . . . . . 16

3.1 Summary of Known Results in Fisher Markets. . . . . . . . . . . . . . . . . . 74

5.1 Phase Portraits of Tâtonnement and Extratâtonnement for the Scarf Economy 155

5.2 Results of Experiments 1-7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

13.1 Normalized Metrics for Economies with Deterministic Transition Probability

Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

13.2 Normalized Metrics for Radner Economies with Stochastic Transition Proba-

bility Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

xviii



List of Tables

1.1 Summary of Main Computational Results for General Equilibrium Models 13

1.2 Summary of Main Computational Results for Optimization Frameworks . . 14

5.1 Summary of Setups for Arrow-Debreu Exchange Economy Experiments . . 156

xix



Chapter 1

Introduction

1.1 Motivation

Historically, the most successful mathematical models—those that have found widespread

applications across various fields—have been distinguished by two key attributes: 1) their

broad applicability and 2) their ability to provide comprehensive mathematical charac-

terizations. These models—including those examined in this thesis, such as variational

inequalities, pseudo-games, and Markov pseudo-games—have helped us make sense of

our reality, whether it be physics (e.g., fluid dynamics (Duvaut and Lions, 1976)), or the

main object of study of this thesis: economics (e.g., asset and commodity pricing (Arrow

and Debreu, 1954; Dafermos, 1990)).

While these models which found widespread applications across disciplines—most of

which were developed in the early 20th century—have improved our understanding of

the world, deriving actionable conclusions from them requires solving them. Initially, re-

searchers sought to obtain closed-form solutions to their models, but as analytical solutions

are intractable beyond very simple applications, with the introduction of computers in

the 1960s, researchers turned their attention to the use of algorithms to instead obtain

numerical solutions for their models (Scarf, 1967a).

Thus, at the dawn of the Information Age in the 1970s (Rifkin, 2011), applied mathematics

and computer science researchers, equipped with their models and building on the foun-
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dations of computational complexity theory (Lax, 1989), set their sights on discovering

algorithms of broad applicability—capable of solving a vast array of mathematical opti-

mization frameworks. In particular, computer scientists began the search for a “holy grail”

algorithm with two key characteristics (Fortnow, 2013): (1) broad applicability, meaning

the ability to accurately solve a wide range of mathematical modeling frameworks, and (2)

polynomial-time efficiency, ensuring that the algorithm halts with a solution in a number

of computational steps polynomial in the input size. While some initial successes were

achieved, it soon became apparent that such an algorithm might not exist at all (Garey and

Johnson, 2002).

Indeed, in the decades following, beginning with the seminal work of Cook (1971) and

later advanced by Papadimitriou (1994), a series of computational complexity results estab-

lished that any polynomial-time algorithm capable of solving one mathematical modeling

framework could, in principle, be adapted to solve another in polynomial time. While

these findings established the theoretical existence of a universally applicable algorithm

for all such frameworks, they also underscored a fundamental limitation: more than half

a century after their introduction, no polynomial-time algorithm has been discovered for

solving even a single one of these models—except in very special cases.

This conjecture, namely the lack of existence of a holy grail algorithm, presents a significant

challenge to the use of mathematical models in solving real-world problems. Yet, as the

demand for such models grows—whether for assessing the impact of climate change or

optimizing public expenditure—researchers and practitioners are often forced to rely on

algorithms that terminate within a reasonable timeframe, albeit at the cost of reduced

accuracy. This trend is particularly concerning, as these models are applied in high-stakes

domains where inaccuracies can lead to misleading or even detrimental outcomes (see, for

instance, (Kim and Kim, 2003)). This thesis takes this challenge as its starting point, aiming to

equip practitioners—particularly in economics—with an algorithmic framework for understanding

and addressing the computational complexities inherent in their modeling problems.
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1.2 Scope and Thesis

Three mathematical modeling frameworks will be the object of study of this thesis:

1. Variational inequalities (Lions and Stampacchia, 1967): A mathematical model

of problems whose set of solutions can be posed as the solutions to an inequality

involving a function.

2. Pseudo-games (Arrow and Debreu, 1954): A mathematical model of problems

whose set of solutions can be posed as the solution of a (static) multiagent optimiza-

tion problem.

3. Stochastic pseudo-games: A mathematical model of problems whose set of solu-

tions can be posed as the solution of a multiagent sequential optimization problem.

The two key characteristic linking these three frameworks is that a solution to them is

always guaranteed to exist (under mild assumptions), and the existence of solution is

established via a non-constructive fixed point theorem such as Kakutani’s (Glicksberg,

1952; Kakutani, 1941) or Brouwer’s fixed point theorem. In more technical terms, the

problem of computing a solution to these models belongs to a class of problems known

as PPAD (Papadimitriou, 1994; Daskalakis et al., 2009; Chen and Deng, 2005). While a

solution to these problems is guaranteed to exist, it has now become a widely upon agreed

conjecture that there does not exist an algorithm that can solve problems in the PPAD class

in polynomial time (Yannakakis, 2009).

In this thesis, these frameworks will be used to model the problem of computing a solution

to three different models of economies, all of which belong a class of well-established eco-

nomic models known as general equilibrium models or, equivalently, infinite Walrasian

economies (i.e., highly abstract models of economies based on the demand and supply for

a set of goods):1

1In this thesis, I use the “Walrasian economy” terminology to refer to economies with a finite set of
commodities. However, Walrasian economies can in general have infinitely many commodities (Prescott and
Lucas, 1972), as is the case with Radner economies, which consist of a possibly infinite set of commodities, as
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1. (Finite) Walrasian economies: A highly abstract model of an economy based on

the demand and supply for a finite set of commodities.

2. Arrow-Debreu economies: Finite Walrasian economies in which the demand and

supply is explicitly generated by consumers and firms, respectively.

3. Radner economies: An infinite-dimensional generalization of Arrow-Debreu

economies which explicitly incorporates time and uncertainty in consumers’ and

firms’ decisions.

A hierarchy of the above general equilibrium models, as well as others which will be

discussed in the sequel, is depicted in Figure 1.1.

Infinite Walrasian Economies

Radner Economies

(Finite) Walrasian Economies

Balanced Economies

Competitive Economies

Arrow-Debreu Economies

Pure Exchange
Economies

Fisher Markets

Figure 1.1: Hierarchy of the General Equilibrium Models Studied in this Thesis

General equilibrium models, and specifically the aforementioned models, are the founda-

tion of much of mathematical economics, and are nowadays used in a myriad of impactful

the complete set of commodities of the economy is given by the union of all commodities across the potentially
infinitely many states of the economy.
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applications from resource allocation to public policy analysis. Unfortunately, the computa-

tion of a solution to these problems has also been shown to belong to the class of PPAD

problems (Deng and Du, 2008; Chen and Teng, 2009), a class of problems that is unlikely

to be solvable in polynomial time, except in special cases. As such, practitioners who use

these models often resort to using algorithms that halt in a reasonable amount of time at

the cost of increased inaccuracy. This practice raises concerns, as these algorithms are for

instance used to solve models for public policy at central banks, with inaccurate solutions

often leading to disastrous policy recommendations (see, for instance Kim and Kim (2003)).

In light of these discouraging facts, I will take an optimistic stance, and defend the following

thesis.

Thesis

There exists a meaningful algorithmic theory of general equilibrium which

allows practitioners to effectively trade-off accuracy and computational

efficiency, and provides broadly-applicable algorithms which perform well in

practice.

To argue this position, I will seek to answer the following twin questions:

1. Can we develop a unified mathematical and computational framework for solving

a broad swath of general equilibrium models in a systematic way?

2. Can we develop broadly applicable algorithms which perform well in practice, and

whose performance can be explained by this framework despite existing impossi-

bility results?

My answer will be two-fold:
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1. I will study the mathematical modeling frameworks of VIs, pseudo-games, and

Markov pseudo-games, and develop algorithmic2 methods with theoretical guaran-

tees to solve these models.

2. I will provide characterizations of Walrasian, Arrow-Debreu, and Radner economies

using the aforementioned mathematical modeling frameworks and use these char-

acterizations devise broadly applicable computational methods that accurately

and efficiently solve these general equilibrium models in practice, and provide a

theoretical explanation of their strong empirical performance.

1.3 Outline

This thesis is organized in three major parts, which are presented following a review

(Chapter 2) of the necessary mathematical background to understand its content. For

readers familiar with the mathematical background, I include a “too long; did not read”

section (Section 2.1), which summarizes the mathematical notation adopted in this thesis.

Each part of this thesis is broken down into two main chapters with the first chapter of each

part describing an optimization framework, its mathematical and algorithmic properties,

and the second chapter describing its application to a type of general equilibrium model.3 I

summarize the outline of these three major parts below.

2My use of the terms of “algorithmic” and “computational” is throughout the thesis mostly interchangeable;
at points, however, I will use the “algorithmic” terminology to insist on the theoretical aspects of algorithms,
while I will use “computational” to in addition refer to the empirical behavior of the algorithms.

3Part I, in addition to these two main chapters also includes an additional chapter on Fisher markets
(Chapter 6) as a specific example of Walrasian economies, for illustrative purposes.
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OUTLINE OF MAJOR THESIS PARTS

(Part I) Variational Inequalities and Walrasian Economies

(Chapter 4) Variational Inequalities

(Chapter 5) Walrasian Economies

(Part II) Pseudo-Games and Arrow-Debreu Economies

(Chapter 9) Pseudo-Games

(Chapter 10) Arrow-Debreu Economies

(Part III) Markov Pseudo-Games and Radner Economies

(Chapter 12) Markov Pseudo-Games

(Chapter 13) Radner Economies

Each chapter that concerns an optimization framework consists of three major sections:

1) mathematical background, 2) first-order methods to solve the optimization framework,

3) merit function methods to solve the optimization framework. The precise meaning

“first-order method” and “merit function method” is described in the chapter relevant to

each optimization framework.

Similarly, each chapter that concerns general equilibrium models consists of three major

sections: 1) mathematical background and formulation within the optimization framework

presented in the preceding chapter, 2) application of the first-order method presented in the

preceding chapter, 3) application of the merit function method presented in the preceding

chapter.

The organization of these parts in the given order serves three purposes. First, the re-

sults introduced in Chapter 4 are used in the rest of the thesis, thus requiring Part I to

come before all others. Second, VIs (respectively, Walrasian economies) can model as a

special case pseudo-games (respectively, Arrow-Debreu economies); thus, the results in

Part I can provide additional insights about the results in Part II. Third, Markov pseudo-
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games (respectively, Radner economies) can be seen as infinite-dimensional (respectively,

infinitely many commodity) generalizations of VIs and pseudo-games (respectively, Wal-

rasian economies and Arrow-Debreu) economies, which the literature has started exploring

only recently, and as such the results in Part I and Part II allow the reader to contextualize

the results in Part III more effectively, and provides an open-ending for a new and exciting

research direction on infinite-dimensional optimization and economies with infinitely many

commodities.

1.4 Contributions

A high-level summary of the contributions of each chapter of the thesis can be found below.

For a more detailed explanation of the contributions of each chapter, I refer the reader to

the Contributions Section of the part in which the chapter is contained (Sections 3.3, 8.3,

11.3). Additionally, a summary of the main computational results for the optimization

frameworks and general equilibrium models studied in this thesis can be found in Table 1.2

and Table 1.1, respectively.

(CHAPTER 4: VARIATIONAL INEQUALITIES): The mirror extragradient class of algorithms

(Algorithm 3, Chapter 4) is introduced, with best-iterate polynomial-time convergence

established for variational inequalities (VIs) that satisfy the Minty condition and are path-

wise Bregman-continuous (e.g., Lipschitz-continuous VIs).4 This result generalizes the

extragradient method analysis of Huang and Zhang (2023) and extends the convergence

guarantees of Zhang and Dai (2023) from unconstrained to constrained domains. Addition-

ally, conditions for the local convergence of the mirror extragradient algorithm to an ε-strong

solution in Bregman-continuous VIs in the absence of the Minty condition are established,

representing the first known result of this kind. Finally, for general VIs, a polynomial-time

4Bregman-continuity is a generalization of Lipschitz-continuity in terms of the Bregman divergence, while
pathwise Bregman-continuity is a further weakening of the Bregman-continuity condition, which requires
Bregman-continuity to only hold over trajectories of the algorithm. See, Chapter 4 for additional definitions
and explanation.
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globally convergent class of merit function methods is developed to compute a solution

satisfying the necessary conditions for a strong solution of the VI.

(CHAPTER 5: WALRASIAN ECONOMIES): A computationally tractable characterization

of Walrasian equilibria in balanced economies is established as the strong solutions of a

variational inequality (VI) satisfying the Minty condition within a unit box constraint. This

result leads to the introduction of the mirror extratâtonnement process (Algorithm 6, Chap-

ter 5), a novel price-adjustment method based on the mirror extragradient approach, whose

polynomial-time convergence is proven in all balanced economies satisfying pathwise

Bregman-continuity. Polynomial-time convergence is further demonstrated in competitive

economies that are variationally stable under bounded excess demand elasticity, extending

prior polynomial-time tâtonnement convergence results under the Gross Substitutes (GS),

Weak Gross Substitutes (WGS), and Weak Axiom of Revealed Preferences (WARP) condi-

tions (see, Figure 1.2 for additional details, and Chapter 5 for precise definitions) to a much

larger class. The process is also shown to converge in polynomial time within the Scarf

economy, marking the first such result for a natural discrete-time price-adjustment method.

Experimental validation confirms the theoretical assumptions necessary for convergence

and demonstrates efficient computation of Walrasian equilibria in large-scale competitive

economies, including PPAD-complete cases such as Leontief economies, for which fast

and reliable convergence is obtained. Finally, for general, potentially non-balanced Wal-

rasian economies, a polynomial-time globally convergent class of merit function methods

is developed to compute a solution satisfying the necessary conditions for a Walrasian

equilibrium.

(CHAPTER 6: HOMOTHETIC FISHER MARKET): The maximum absolute value of the

Hicksian price elasticity of demand is identified as a key parameter for analyzing the

convergence of (entropic) tâtonnement in an important class of Walrasian economies known

as homothetic Fisher markets. A sublinear convergence rate of O((1+ϵ2)/T) is established,

where ϵ represents the maximum Hicksian price elasticity of demand across buyers. This
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result generalizes existing convergence analyses for CES and nested CES utilities, unifying

previously disjointed convergence and non-convergence findings. It encompasses the full

spectrum of (nested) CES utilities, including Leontief and linear utilities, recovering the

best-known rate of O(1/T) for Leontief markets (ϵ = 0) and confirming the non-convergent

behavior of tâtonnement in linear markets as ϵ→∞. Known existing computational results

for the convergence of tâtonnement in Fisher markets in light of this result is summarized in

Figure 3.1a.

(CHAPTER 9: PSEUDO-GAMES) The existence of variational equilibrium in quasicon-

cave pseudo-games with jointly convex constraints is first re-established, followed by the

introduction of first-order variational equilibrium, which is shown to exist in a broader

class of pseudo-games than previously known—specifically, smooth games with jointly

convex constraints. An equivalence is then established between (first-order) variational

equilibria in pseudo-games and strong solutions of variational inequalities, leading to

the characterization of a new class of pseudo-games, termed variationally stable pseudo-

games with jointly convex constraints. For this class, first-order variational equilibrium

can be computed in polynomial time using a novel learning dynamic called the mirror

extragradient learning dynamics (Algorithm 7, Chapter 9). In the special case where the

pseudo-game is also concave, this result extends to variational equilibrium computation,

representing the broadest known result of its kind. Finally, for general pseudo-games with

jointly convex constraints that are not necessarily variationally stable, a polynomial-time

globally convergent class of merit function methods is developed to compute a solution

that satisfies the necessary conditions for variational equilibrium.

(CHAPTER 10: ARROW-DEBREU ECONOMIES): Novel mathematical characterizations

of Arrow-Debreu equilibrium in Arrow-Debreu economies are developed. First, it is re-

established that the set of Arrow-Debreu equilibria in any quasiconcave Arrow-Debreu

economy corresponds to the set of generalized Nash equilibria of the Arrow-Debreu pseudo-

game. Due to the intractability of this characterization, a new formulation is introduced,
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expressing the set of Arrow-Debreu equilibria in any concave pure exchange economy as

the set of generalized Nash equilibria of the trading post pseudo-game, a variationally

stable pseudo-game with jointly convex constraints. The mirror extragradient learning dy-

namics are then applied to this pseudo-game, yielding a market dynamic termed the mirror

extratrade dynamic. While the trading post pseudo-game is not concave, it is shown to be

pseudoconcave, allowing an approximate first-order variational equilibrium to be com-

puted in polynomial time, with asymptotic convergence to a variational equilibrium—and

thus to an Arrow-Debreu equilibrium of the associated concave pure exchange economy—

to the best of my knowledge the broadest convergence result of its kind. Finally, for general,

potentially non-concave Arrow-Debreu economies, a polynomial-time globally convergent

class of merit function methods is developed to compute a solution satisfying the necessary

conditions for an Arrow-Debreu equilibrium.

(CHAPTER 12: MARKOV PSEUDO-GAMES): Markov pseudo-games are introduced as

a generalization of Markov games (i.e., games with time and uncertainty), where other

players’ actions influence both rewards and available actions. The existence of pure gener-

alized Markov perfect equilibria (GMPE) is established in concave Markov pseudo-games,

extending to the dynamic stochastic setting, Arrow-Debreu’s equilibrium existence results

for (static) concave pseudo-games. This also implies the existence of pure Markov perfect

equilibria in a broad class of continuous-action Markov games, where previously only

mixed-strategy equilibria were known to exist (Fink, 1964; Takahashi, 1964). Although

computing GMPE is PPAD-hard in general, the problem is reformulated as a generative

adversarial learning task, where a generator proposes an equilibrium policy profile, and

an adversary produces best responses. Leveraging advances in generative adversarial

learning, it is shown that under mild assumptions, a policy profile that is a stationary point

of exploitability (players’ cumulative maximum regret) can be computed in polynomial

time. This result applies to Markov pseudo-games with a bounded best-response mismatch

coefficient, which requires that states explored by any GMPE are sampled sufficiently often
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under the initial state distribution. This approach parallels known computational results

for zero-sum Markov games. As these theoretical guarantees hold for policies represented

by neural networks, this provides the first deep reinforcement learning algorithm with

theoretical guarantees for general-sum games—a very broad class of general-sum games,

at that.

(CHAPTER 13: RADNER ECONOMIES): An extension of Magill and Quinzii’s infinite

horizon exchange economy (Magill and Quinzii, 1994), termed the Radner economy, is intro-

duced, generalizing the model to arbitrary assets while restricting the transition dynamics

to be Markovian. This restriction enables a proof of existence for a recursive Radner equilib-

rium (RRE), a Radner equilibrium independent of the initial state distribution, simplifying

the equilibrium policy domain to the space of states rather than histories and making

computation more tractable. The set of RREs in any Radner economy is reformulated as the

set of generalized Markov perfect equilibria (GMPE) of an associated Markov pseudo-game,

extending prior results that were limited to economies with a single consumer, commodity,

or asset. This formulation further implies that a stationary point of exploitability in the

associated Markov pseudo-game can be computed in polynomial time. To validate these

theoretical results, a the method is implemented as a generative adversarial policy network

and applied to three Radner economies with distinct utility functions. Experimental find-

ings indicate that the method produces approximate equilibrium policies that are much

closer to GMPE than those generated by a standard macroeconomic baseline for solving

stochastic economies.

1.5 Historical and Academic Context

1.5.1 General Equilibrium Theory: The Foundations of Economic Modeling

Key to the historical development of mathematical models in economics was a need to

understand how economies functioned (i.e., the emergence of demand, supply, and prices),

dating back to as early as the 18th century to French-Irish economist Richard Cantillon’s
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Table 1.1: Summary of Main Computational Results for General Equilibrium Models
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14



Balanced Economies

Quasimonotone Economies

Variationally Stable

Competitive Economies

WARP Economies

GS Economies

WGS Economies

Law of Supply

& Demand Economies

Figure 1.2: Walrasian Economies for which there exists a polynomial-time price-adjustment process. Economies
for which I prove polynomial-time convergence of mirror extratâtonnement are depicted in pink hues (i.e.,
balanced, variationally stable competitive, quasimonotone, law of supply and demand economies), while
economies for which polynomial-time convergence was known are depicted in blue hues (i.e., WGS, GS, WARP
economies). The convergence result for balanced economies holds under the assumption of pathwise Bregman-
continuity, whose plausibility I verify in experiments (Section 5.4.3, Chapter 5, Part I), while the convergence
result for variational stable competitive economies holds under the assumption that the price elasticity of
excess demand is bounded (see, Chapter 5, Part I for additional details). The polynomial-time price-adjustment
process for economies in blue is tâtonnement. The convergence result for WARP economies was introduced by
Uzawa (1960); the first weakly polynomial-time convergence result (i.e., without any elasticity boundedness
assumptions) for WGS economies was introduced by Codenotti et al. (2005), with Cole and Fleischer (2008)
proving a strongly polynomial-time convergence result (i.e., in terms of elasticity bounds).

work (Cantillon, 1755). While a great number of economists including Adam Smith (Smith,

1937), David Ricardo (Ricardo, 1895), John Stuart Mill (Mill, 1965), and Alfred Marshall

(Marshall, 1910) would make great contributions to our understanding of demand, supply,

and prices, it would not be until the pioneering work of French economist Léon Walras

(Walras, 1896) that a clear modeling paradigm for economies would emerge.

Walras formulated a mathematical model of markets (nowadays known as a Walrasian

market) as a system of resource allocation comprising supply and demand functions that
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(a) The convergence rates of tâtonnement for differ-
ent Fisher markets. We color previous contribu-
tions in blue, and our contribution in red, i.e., we
study homothetic Fisher markets where ϵ is the
maximum absolute value of the price elasticity of
Hicksian demand across all buyers. We note that
the convergence rate for WGS markets does not
apply to markets where the price elasticity of Mar-
shallian demand is unbounded, e.g., linear Fisher
markets; likewise, the convergence rate for nested
CES Fisher markets does not apply to linear or
Leontief Fisher markets.
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Marshallian0 ∞−∞
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Leontief
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(b) Cross-price elasticity taxonomy of well-known
homogeneous utility functions. There are no previ-
ously studied utility functions in the space of util-
ity functions with negative Hicksian cross-price
elasticity. Future work could investigate this space
and prove faster convergence rates than those pro-
vided in this thesis. We note that our convergence
result covers the entire spectrum of this taxonomy
(excluding the limits of the y-axis).

Figure 1.3: A summary of known results in Fisher markets.

map values for resources, called prices, to quantities of resources—ceteris paribus, i.e., all

else being equal. Walras also defined a steady state of a market, which he called competitive

(nowadays, also called a Walrasian) equilibrium, as prices s.t. the demand is feasible, i.e.,

the demand for each resource is less than or equal to its supply, and Walras’ law holds, i.e.,

the value of the supply is equal to the value of the demand. Unlike in Walras’ model, in

real-world markets, all else is not equal, and markets do not exist in isolation but are part

of an economy. Indeed, the supply and demand of resources in one market depend not

only on prices in that market, but also on the supply and demand of resources in other

markets. If every market in an economy is simultaneously at a competitive equilibrium,

Walras’ law holds for the economy as a whole; this steady state, now a property of the

economy, is called a general equilibrium.

As such, Walras’ early forays in economic modeling would leave two important questions

open. First, it would be unclear if Walras’ market model could model an entire economy

with consumers and firms and a number of different markets. Second, Walras did not

provide conditions that guarantee the existence of a competitive equilibrium and it was
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not clear if such prices existed. The question of whether Walras’ model could be seen as

a model of an economy, and under what conditions competitive equilibrium prices exist,

would remain open for over half a century until Arrow and Debreu’s seminal model of a

competitive economy (nowadays also called Arrow-Debreu economies) for which Arrow

and Debreu (1954) proved the existence of a competitive equilibrium.

Remark 1.5.1 [Some history].

Following the second world war, European and American governments had to preside over

the reconstruction of devastated economies. This required an improved understanding of

the role of public expenditure in economic activity, since the war had led to an unprece-

dented increase in the role of government in the economy, a change that unsustainable.

While in 1944, the American government’s spending at all levels accounted for 55 percent

of gross domestic product (GDP), by 1947, government spending had dropped 75 percent

in real terms, or from 55 percent of GDP to just over 16 percent of GDP (Bureau of Eco-

nomic Analysis, 2021). Fortunately, when the Second World War (WW2) broke out, many

European academics escaping the war moved to the United States, aiding the development

of rigorous mathematical models of economies, which would be key to understanding

how to manage the role of public expenditure in economic growth. These academics

concentrated primarily at the University of Chicago, where the Cowles Commission was

founded in 1939, with the Viennese maxim, “Science is Measurement” (Mitra-Kahn, 2005).

The Cowles commission aimed to link mathematics and economics (Mitra-Kahn, 2005),

and played a crucial role in the development of mathematical microeconomic models that

have become the foundation of modern economics. These efforts, initiated by the Cowles

Commission, culminated in the seminal work of Keneth Arrow and Gérard Debreu, who

proved the existence of general equilibria in a very general setting (Arrow and Debreu,

1954).

In their model, Arrow and Debreu posit a set of resources, modeled as commodities, each of

which is assigned a price; a set of consumers, each choosing a quantity of each commodity
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to consume that maximizes their utility function in exchange for their endowment (e.g.,

labor); and a set of firms, each choosing a profit-maximizing quantity of each commodity to

produce, with prices determining aggregate demand, i.e., the sum of the utility-maximizing

consumptions across all consumers, and aggregate supply, i.e., the sum of endowments

and profit-maximizing productions across all consumers and firms, respectively. Notably,

Arrow and Debreu’s model could be seen as a special case of Walras model defined by the

aggregate demand and aggregate supply, and its solution being defined as the associated

competitive, now better called general, equilibrium. This reduction would demonstrate

that Walras’ much simpler model can accurately model an economy without the need to

assume that all else is equal, allowing us to call his model a Walrasian economy rather than

a market de jure. Even more importantly, under mild assumptions Arrow-Debreu proved

that a general equilibrium exists in their model, hence providing sufficient and meaningful

conditions for the existence of a competitive equilibrium in Walrasian economies.

Nevertheless, soon after Arrow and Debreu’s monumental achievement, another issue

would emerge. Arrow-Debreu and Walrasian economies are static economies, which do

not explicitly model time and uncertainty. That is, unlike real-world economies, all trade

in such economies happens in a single time period when the world is at a given state. To

get around this issue, Arrow and Debreu argued that commodities were to be seen as state

and time contingent, with each one representing a good or service which can be bought

or sold in a single time period, but that encodes delivery opportunities at a finite number

of distinct points in a larger space that incorporates state and time. However, as this

explanation would not be a realistic explanation of real-world economies, in the decades

to come, economists would seek an answer to the question of whether Arrow-Debreu

and Walrasian economies could represent an economy with time and uncertainty, and if a

general equilibrium would be guaranteed to exist in economies with time and uncertainty.

The question would mostly remain open for nearly 20 years until Radner’s introduction of

the stochastic competitive economy (nowadays also called the Radner economy in which
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he proved the existence of a general equilibrium under suitable assumptions (Radner,

1972). The Radner economy, initialized at a state of the world, is a finite-horizon economy

comprising a sequence of spot markets in which consumers and firms can purchase and

sell commodities for immediate delivery, all linked across time by asset markets in which

consumers and firms can buy or sell assets that deliver a payment when a particular state of

the world occurs, with the economy stochastically transitioning to one of many other world

states once consumers and firms have made their purchases. Commodities (respectively,

assets) are assigned state and time contingent prices, which determine their aggregate

state and time contingent demand, i.e., the sum of utility maximizing consumptions

(respectively, asset portfolios), and aggregate state and time contingent supply, i.e., the

sum of endowments and profit-maximizing productions (respectively, asset portfolios)

across all consumers and firms, respectively. Similar to Arrow-Debreu economies, any

Radner economy can be cast as a Walrasian economy given by the aggregate state and time

contingent demand and supply, with its solution being defined as a general equilibrium

of this Walrasian economy. Further, under suitable assumptions on the asset market,

Arrow (1964) shows that any Radner economy can also be represented as an Arrow-Debreu

economy, thus further demonstrating that Walrasian economies and their solution concept,

the general equilibrium, can effectively model economies with time and uncertainty.

Nearly half a century later, Arrow-Debreu and Radner economies have become founda-

tional pillars of modern mathematical economics, providing an explanation of the most

important facets of any economy. While these models only scratch the surface of the

mathematical models of economies developed since Arrow and Debreu’s work, all such

models share one common characteristic: they can be cast as Walrasian economies, with

their solution corresponding to a general equilibrium of the associated Walrasian economy,

thus leading to them colloquially called general equilibrium models.

In developing their models and establishing their existence results, Arrow and Debreu

and Radner would pioneer the development of the theory of games and stochastic games,
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which would continue to play a key role in the development of various other branches of

mathematical economics, such as mechanism design and financial economics. While the

algorithmic theory developed in this thesis will be applied specifically to the analysis of

algorithms for general equilibrium models, all the results developed within this thesis will

be developed within broader and more abstract mathematical optimization frameworks,

some of which were first studied by Arrow and Debreu (e.g., pseudo-games) and Radner

(e.g., stochastic pseudo-games), and others developed subsequently (e.g., variational in-

equalities). As such, the algorithms and analyses I provide in this thesis are relevant not

only to general equilibrium models, but also to other areas of mathematical economics such

as the aforementioned areas of mechanism design and financial economics.

1.5.2 General Equilibrium Theory at the Origin of Mechanism Design

Much of mathematical microeconomic theory since the 1970s would focus on the develop-

ment of mechanism design (i.e., mathematical and algorithmic frameworks for the design

of markets), which has nowadays become a cornerstone of mathematical economics. In par-

ticular, the computational literature on economics has dedicated a great deal of resources,

often at the expense of general equilibrium theory, to the development of an algorithmic

theory of mechanism design, perhaps due to the financial incentives provided by the

emergence of online market places. The goal of this digression is to clarify the historical

connections between mechanism design and general equilibrium theory, and underscore

the importance of developing the algorithmic theory of general equilibrium to further our

understanding of algorithmic mechanism design.

Recall that the key political driver behind the development of general equilibrium theory

was the need to better understand economies in order to optimally reduce public expen-

diture, which had drastically increased during World War II (see Remark 1.5.1). As part

of this development, in separate papers, Arrow and Debreu independently but simulta-

neously proved the first and second welfare theorems of economics, which stated that 1)
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consumptions and productions associated with a general equilibrium are Pareto-efficient

and 2) any collection of Pareto-optimal consumptions and productions can be associated

with a general equilibrium (price system) (Arrow, 1951a; Debreu, 1951b).

Arrow and Debreu’s results implied that competitive economies5 are thus an efficient way

to allocate resources, since they result in a Pareto-optimal distribution of resources—an

inference which is contingent on the global stability of general equilibria, i.e., free markets

actually settling into a general equilibrium. Unfortunately, Arrow and Debreu’s results

provided ambiguous conclusions on how to transition away from a war economy with high

public expenditure. On one hand, Arrow and Debreu’s results suggested that a post-war

economy with no governmental intervention and no public expenditure was optimal, as

free markets are a Pareto-efficient mechanism of resource allocation. On the other hand, real-

world markets would never truly be free and it seemed like decreasing public expenditure

significantly could be a disastrous economic choice as Paul Samuelson, 1970 Nobel Prize

laureate, wrote in 1943: “some ten million men will be thrown on the labor market” (Mitra-

Kahn, 2005), warning that it would be “the greatest period of unemployment and industrial

dislocation which any economy has ever faced” (Mitra-Kahn, 2005).

The issue of public expenditure in a post-war world would become a central theme in

Samuelson’s research, who would provide the first rigorous definition of public goods.

Based on his definition Samuelson would then derive what came to be known as the

Samuelson condition: the first-order optimality condition associated with the optimal

provision of public goods in terms of the demand and supply for public goods (Samuelson,

1954). Samuelson’s work was groundbreaking in the sense that it moved the problem

of allocating public spending from the realm of political theory to the realm of general

equilibrium theory. Samuelson’s analysis would be studied more rigorously in subsequent

general equilibrium models, eventually culminating in a generalization of Arrow-Debreu’s

5A competitive economy in this sense is one that resembles an Arrow-Debreu economy.
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model of a competitive economy called the private ownership economy with public goods,

a model which differentiates between public and private goods (Mitra-Kahn, 2005).

An important result that emerged from this line of work started by Samuelson, which was

proven by Foley, is that a general equilibrium (also known as a Lindahl-Foley equilibrium)

exists in a general equilibrium model with private ownership and public goods (also known

as a Lindahl-Foley economy), and that the first and second welfare theorems apply (Foley,

1970). Foley’s results confirmed the role that governments have been attributed to achieving,

namely a Pareto-optimal allocation of resources via redistribution policies (Mitra-Kahn,

2005). Although a gross simplification of the conclusion, this meant that governments could

direct their public expenditures using the first-order optimality conditions determined by

Samuelson, which now could be interpreted as the welfare-maximizing quantities of public

goods prescribed by the general equilibrium of the Lindahl-Foley economy, to provide

optimal levels of public goods, ensuring their economies settle into a Pareto-optimal

allocation of resources!

While a Lindahl-Foley equilibrium provides us with a way to determine an optimal quantity

of public goods to provide, computing such an optimal provision of public goods is not

straightforward, because it requires the policy maker to know consumers’ true preferences.

One possible workaround is to elicit consumers’ preferences; however, as it turns out,

consumers have an incentive to lie about their preferences over public goods, as they

can obtain a more favorable allocation of public goods prescribed by the Lindahl-Foley

equilibrium by doing so. This in turn might lead the policy maker to compute a non-optimal

provision of public goods.

The issue of incentive-compatibility, i.e., consumers not reporting their preferences truth-

fully, in the provision of public goods led to the development of mechanism design. In order

to ensure that economies achieve a Pareto-optimal allocation of resources, governments

had to choose their equilibrium levels of public expenditure, yet to compute these equi-

librium levels, governments had to be able to elicit the true preference of consumers over
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public goods. This required the development of the mechanism design literature, which

would provide a new formalization of social and economic interactions that accounted

for incentives. The consistent objective of the mechanism design literature, which was

introduced in seminal papers by Hurwicz in the 1960s and 70s (Hurwicz, 1972; 1960; 1979),

was in fact to provide a more powerful framework than general equilibrium theory to

address the issue of incentive compatibility. From this vantage point, mechanism design

can be seen as a generalization of general equilibrium theory. More precisely, the general

equilibrium or the competitive equilibrium is a particular outcome of a game, just like the

VCG outcome is, and the Walrasian mechanism, i.e., the function which takes as input the

preferences of consumers, computes and outputs a competitive equilibrium, is an instance

of a mechanism just like the VCG mechanism is.

More importantly, however, history tells us that without general equilibrium theory, there

would be no mechanism design. Perhaps an analogy is fitting here: general equilibrium

is to mechanism design, as the normal distribution is to probability theory. Just like one

cannot imagine a theory of probability without a solid understanding of the statistical and

algorithmic properties of the normal distribution, one cannot expect a proper understanding

of mechanism design without a proper understanding of the economic and algorithmic

properties of general equilibria. History is the biggest testament to this statement: without

general equilibrium theory’s incentive issue, Hurwicz and others would not have been

inspired to develop the theory of mechanism design. As such, the algorithms and analyses

introduced in this thesis inform not only general equilibrium theory but also other branches

of mathematical economics, perhaps most notably, mechanism design.
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Chapter 2

Mathematical Background

2.1 Too Long; Did Not Read

For the reader familiar with the mathematical background, in this section, I provide a brief

overview of the notational conventions and mathematical definitions used throughout this

thesis. For the remainder of this thesis, excluding the conclusion, I will use the pronoun

“we” instead of “I” to maintain narrative fluidity in the mathematical exposition.

2.1.1 Notation

We adopt the following calligraphic conventions to insist on the nature of the mathematical

object at hand: We use calligraphic uppercase letters to denote sets (e.g., X ), bold uppercase

letters to denote matrices (e.g., X ), bold lowercase letters to denote vectors (e.g., p),

lowercase letters to denote scalar quantities (e.g., x), and uppercase letters to denote

random variables (e.g., X). We denote the ith row vector of a matrix (e.g., X ) by the

corresponding bold lowercase letter with subscript i (e.g., xi). Similarly, we denote the jth

entry of a vector (e.g., p or xi) by the corresponding lowercase letter with subscript j (e.g.,

pj or xij). We denote functions by a letter determined by the value of the function, e.g., f if

the mapping is scalar valued, f if the mapping is vector valued, and F if the mapping is

set valued.
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For any collection of sets {Ai}i∈[n], we define the notation (ai,a−i)
.
= (a1, . . . ,an) ∈

×i∈[n]Ai, where a−i ∈×i′∈[n],i′ ̸=iAi′ denotes (a1, . . . ,ai−1,ai+1, . . . ,an) with the ith entry

ai ∈ Ai removed.

We denote the set {1, . . . , n} by [n], the set {n, n+ 1, . . . ,m} by [n : m], the set of natural

numbers by N, and the set of real numbers by R. We denote the positive and strictly positive

elements of a set using a + or ++ subscript, respectively, e.g., R+ and R++. For any n ∈ N,

we denote the n-dimensional vector of zeros and ones by 0n and 1n, respectively.

2.1.2 Mathematical Definitions

We let ∆n = {x ∈ Rn+ |
∑n

i=1 xi = 1} denote the unit simplex in Rn, and ∆(A) denote the set

of all probability measures over a given set A. We also define the support of a probability

density function f ∈ ∆(X ) as supp(f)
.
= {x ∈ X | f(x) > 0}. Finally, we denote the

orthogonal projection operator onto a set C by ΠC , i.e., ΠC(x)
.
= argminy∈C ∥x− y∥2.

For any ε ≥ 0, we write Bε[x] = {x′ ∈ M | d(x, x′) ≤ ε} and Bε(x) = {x′ ∈ M | d(x, x′) <

ε} to denote the closed and open ε-ball centered at x ∈M, respectively.

For any real number a ∈ R, aX denotes the (Minkowski) product, i.e., aY .
= {ax | x ∈ X};

X + Y denotes the (Minkowski) sum of X and Y , i.e., X + Y .
= {x + y | x ∈ X , y ∈ Y}; and

X −Y denotes the (Minkowski) difference of X and Y , i.e., X −Y .
= {x− y | x ∈ X , y ∈ Y}.

We denote by 1C(x) the indicator function of a set C, with value 1 if x ∈ C and 0 otherwise.

Given two vectors x,y ∈ Rn, we write x ≥ y or x > y to mean component-wise ≥ or >,

respectively.

For any set C, we denote the diameter by diam(C) .= maxc,c′∈C∥c− c′∥.

We define the gradient operator ∇x as the operator which takes as input a function f :

X × Y → R, and outputs a vector-valued function consisting of the partial derivatives of f

w.r.t. x. We denote the derivative operator (respectively, partial derivative operator w.r.t. x)

of any function g : X × Y → Z by ∂g (respectively, ∂xg). We define the subdifferential of
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any function f : X × Y → R w.r.t. variable x at a point (a, b) ∈ X × Y by Dxf(a, b)
.
= {h |

f(x, b) ≥ f(a, b) + hT (x− a)},

Functions. Given a Euclidean vector space X ⊆ Rn, we define its dual space X ∗ as the set

of all linear maps f : X → Rn. Let (X , ∥·∥X ), (Y, ∥·∥Y) be normed vector spaces. Consider

a function f : X → Y . f is continuous if for all sequences {x(n)}n∈N s.t. x(n) → x ∈ X , it

holds that f(x(n)) → f(x). Given ℓ ≥ 0, f is ℓ-Lipschitz continuous on A ⊆ X iff for all

x1,x2 ∈ A, ∥f(x1)− f(x2)∥Y ≤ ℓ ∥x1 − x2∥X . Consider a function f : X → R. f is convex

iff for all λ ∈ [0, 1] and x,x′ ∈ X , f(λx + (1− λ)x′) ≤ λf(x) + (1− λ)f(x′) . Given µ ≥ 0,

f is µ-strongly-convex, iff x 7→ f(x)− µ/2∥x∥2 is convex.

Correspondences. Let (X , ⟨·, ·⟩) be an inner product space. Consider a correspon-

dence R : X ⇒ X ∗. R is continuous if for any sequence {x(n)}n∈N+
⊂ X such that

x(n) → x, it holds that R(x(n))→ R(x). R is upper hemicontinuous if for any sequence

{(x(n), y(n)}n∈N+
⊂ X ×X ∗ such that (x(n), y(n))→ (x, y) and y(n) ∈ R(x(n)) for all n ∈ N+,

it also holds that y ∈ R(x). R is closed-valued (resp. compact-valued / convex-valued /

singleton-valued) iff for all x ∈ X ,R(x) is closed (resp. compact / convex / a singleton).

R is monotone iff for all x, x′ ∈ X , and y ∈ R(x), y′ ∈ R(x′), ⟨y′ − y, x′ − x⟩ ≥ 0 . R

is pseudomonotone iff for all x, x′ ∈ X , and y ∈ R(x), y′ ∈ R(x′), ⟨y′, x′ − x⟩ ≥ 0 =⇒

⟨y, x − x′⟩ ≥ 0. R is quasimonotone iff for all x, x′ ∈ X , and y ∈ R(x), y′ ∈ R(x′),

⟨y′, x′ − x⟩ > 0 =⇒ ⟨y, x − x′⟩ ≥ 0. We note the following relationship between these

notions of monotonicity: monotone =⇒ pseudomonotone =⇒ quasimonotone.
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2.2 Set Theory

2.2.1 Sets

The notion of a set (or collection or family) which are objects that consists of elements

(or points) is taken as a primitive throughout, and as such a background in set theory is

prerequisite for understanding the notions developed in this thesis. We refer the reader to

the prologue of Folland (1999) for the necessary background.

We use the shorthands ∀ and ∃ to respectively mean for all (or for every), and there exists

(or for some).

Unless otherwise noted, letters will be used as variables, i.e., placeholders that denote a

value. We use caligraphic uppercase letters or Greek uppercase letters to denote sets (e.g.,

X or Φ).

X = {u, v, w} denotes the elements of the set X , namely u, v, w. Order and repetitions are

insignificant, that is, {u, v, w} = {u,w,w, v, u, w, v}.

The elipsis . . . is meant to be understood as a logical completion of any sequence, e.g.,

X = {u, v, w, . . .} = {u, v, w, x, y, z}.

∅ .= {} denotes the empty set {}, i.e., the set without any elements.

X is called a singleton iff it contains only one element.

[n] denotes the set of integers {1, . . . , n}.

[n : m] denotes the set of integers {n, n+ 1 . . . ,m}.

N denotes the set of natural numbers {1, 2, 3, . . .}.

R denotes the set of real numbers (i.e., the set of all numbers strictly between −∞ and∞).

R̄ denotes the set of extended real numbers R ∪ {−∞,∞}.
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We denote the positive and strictly positive (respectively, negative and strictly negative)

elements of a set by + and ++ (respectively, − and −−) subscripts, respectively, e.g., R+

and R−−.

x ∈ X means x is an element of the set X .

x /∈ X means x is not an element of the set X .

Y ⊆ X (or X ⊇ Y) means every element of Y is also an element of the set of X , in which

case we will say that Y is a subset of X .

Y = X means that Y ⊆ X and Y ⊇ X .

Y ⊂ X (Y ⊊ X or X ⊃ Y or X ⊋ Y) means that we have Y ⊆ X but not Y = X , in which

case we will say that Y is a strict subset of X .

A set X is non-empty iff X ̸= ∅.

A set X is said to be affine iff for all λ ∈ R and x, y ∈ X , we have λx + (1− λ)y ∈ X .

A set X is said to be convex iff for all λ ∈ [0, 1] and x, y ∈ X , we have λx + (1− λ)y ∈ X .

The set of all elements, which will be clear from context, is called the universal set, and is

denoted by U .

Given any set X ⊆ U , we denote its power set, i.e., the collection of all of its subsets, by

2
X .
= {Y ⊆ X}.

{x ∈ X | P (x)} denotes the set of all elements x ∈ X for which the proposition P (x) is

true.

X ∪Y is called the union of the sets X and Y , and is given by the set {x ∈ U | x ∈ X or x ∈

Y}.

X ∩ Y is called the intersection of the sets X and Y , and is given by the set {x ∈ U | x ∈

X and x ∈ Y}, often written as {x | x ∈ X , x ∈ Y}.
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Two sets X ,Y ⊆ U are said to be disjoint iff their intersection is empty, i.e., X ∩ Y = ∅. A

collection of sets E ⊆ U is said to be pairwise disjoint iff for all X ,Y ∈ E s.t. X ̸= Y , X and

Y are disjoint.

If E ⊆ U is a collection of sets, we define the the union and intersection of its members

respectively as:

⋃
X∈E
X .

= {x ∈ U | for some x ∈ X}

⋂
X∈E
X .

= {x ∈ U | for all x ∈ X}

{Xi}i∈I denotes a collection of Xi’s, i.e.,
⋃
i∈I{Xi}. Similarly, for any k, n ∈ N s.t. k ≥ n,

{Xi}ni=k denotes the collection of the sets Xk, . . . ,Xn, i.e.,
⋃n
i=k{Xi}. When the index set I is

clear from context, we will often write {Xi}i.

For any set X ⊆ M, and family of sets {Yi}i∈I such that X ⊆
⋃
i∈I Yi, {Yi}i∈I is called a

cover of X , and X is said to be covered by the Yi’s.

X\Y is called the difference of the setsX and Y , and is given by {x ∈ U | x ∈ X and x /∈ Y}.

The complement X c of a set X ⊆ U is given by the difference of the universal set U and X ,

i.e., X c .= U\X .

An n-tuple (or tuple when clear from context) x .
= (x1, x2, . . . , xn) is an ordered array of

n ∈ N++ elements s.t. two tuples x and y are equal, i.e., (x1, x2, . . . , xn) = (y1, y2, . . . , yn),

iff xi = yi for all i ∈ [n]. We sometimes use a bold lowercase letter to stress that a variable is

a tuple, but a normal font lowercase letter can also represent a tuple. (xi,x−i) denotes the

tuple x
.
= (x1, . . . , xn), where x−i denotes x with the ith element xi removed. A 2-tuple is

often also called a pair. For any k, n ∈ N s.t. k ≥ n, {xi}ni=k denotes the tuple (xk, . . . , xn).

When clear from context, we will often write (xi)i.

For convenience, we will denote an n-tuple which consists of the same number by the

number in bold font with a subscript of n, e.g., 03
.
= (0, 0, 0) or 14

.
= (1, 1, 1, 1). When clear

from, context, we will often omit the subscript.
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We denote the n-dimensional ith basis vector ji
.
= (1,0n,−i).

X ×Y is the Cartesian product of sets X and Y and is given by {(x, y) | x ∈ X , y ∈ Y}. The

Cartesian product of a collection {Xi}i∈[n] of n ∈ N sets is given by×i∈[n]Xi
.
= X1× . . .×Xn.

When for all i ∈ [n], Xi = Y , we write Yn .
=×i∈[n]Xi.

∆n denotes the unit simplex in Rn, i.e., ∆n = {x ∈ Rn+ |
∑n

i=1 xi = 1}.

We denote the affine hull of any set X by aff(X ) .
=
⋂

Y⊃X :Y is affine Y . For X ⊆ Rn,

by Caratheodory’s theorem, this definition reduces to aff(X ) .
= {

∑n+1
i=1 λixi | ∀λ ∈

Rn+1 s.t.
∑

i∈[n+1] λi = 1}. We denote the convex hull of any set X by conv(X ) .
=⋂

Y⊃X :Y is convex Y . For X ⊆ Rn, by Caratheodory’s theorem, this definition reduces to

conv(X ) .= {
∑n+1

i=1 λixi | ∀λ ∈ ∆n+1}.

For any real number a ∈ R, aX denotes the (Minkowski) product, i.e., aY .
= {ax | x ∈ X}.

X + Y denotes the (Minkowski) sum of X and Y , i.e., X + Y .
= {x + y | x ∈ X , y ∈ Y}.

X −Y denotes the (Minkowski) difference of X and Y , i.e., X −Y .
= {x− y | x ∈ X , y ∈ Y}.

2.2.2 Relations

Relations Given sets X and Y , a relation R ⊆ X × Y from X to its codomain Y is a

subset of X × Y . For any x ∈ X , y ∈ Y , we write x ⪰R y to mean (x, y) ∈ R.

The domain dom(R) of a relationR is given by the set dom(R)
.
= {x ∈ X | ∃y ∈ Y s.t. x ⪰R

y}.

The range (or image) of a relation R is given by the set range(R)
.
= {y ∈ Y | ∃x ∈

X s.t. x ⪰R y}.

The inverseR−1 ⊆ Y × X of a relationR ⊆ X × Y isR−1 .
= {(y, x) ∈ Y × X | x ⪰R y}.

The imageR(x) ⊆ Y of x ∈ X under a relationR ⊆ X × Y isR(x)
.
= {y ∈ Y | x ⪰R y}.

The imageR(A) ⊆ Y of a set A ⊆ X under a relationR ⊆ X × Y isR(A) .=
⋃
x∈AR(x).
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Let R ⊆ X × Y be a relation from X to Y , and R′Y × Z be a relation from Y to Z . The

compositionR′ ◦ R ofR′ withR is defined as:

R′ ◦ R .
= {(x, z) ∈ X × Z | ∃y ∈ Y s.t. x ⪰R y, y ⪰R′ z}

If Y .
= X , then R ⊆ X × X is said to be a (binary) relation on X , in which case for all

x, y ∈ X , we say that x succeeds y iff x ⪰R y . Further, we say that x preceeds y and we

write x ⪯R y to mean (y, x) ∈ R. We say that x is similar to y and write x ≃ y iff x ⪰R y

and y ⪯R x, and we write x ̸≃ y otherwise. We say that x strictly succeeds (respectively,

strictly preceeds) y and write x ≻R y (respectively, x ≺R y) to mean x ⪰R y and x ̸≃R y

(respectively, x ⪯R y and x ̸≃R y). WhenR is clear from context, we denote ⪰R , ⪯R , and

≃R simply by ⪰, ⪯, and ≃, respectively.

For any binary relationR ⊆ X ×X , we also define the following properties. The relation

R is complete iff for all x, y ∈ X , either x ⪰ y , x ⪯ y , or x ≃ y . The relationR is transitive

iff, for all x, y, z ∈ X , x ⪰ z whenever x ⪰ y and y ⪰ z. The relationR is antisymmetric iff

for all x, y ∈ X , x ⪰ y and x ⪯ y , then x = y . The relation R is reflexive iff for all x ∈ X ,

x ⪰ x.

A partial order (U ,R) consists of a universal set U and a binary relationR ⊆ U × U which

is transitive, antisymmetric, and reflexive. If, in addition, R is complete, then (U ,R) is

complete order. When U .
= R, then we will assume that (U ,R) is the usual (total) order

on R, in which case we denote ⪰R ,⪯R ,≃R ,≻R ,≺R by ≥,≤,=, >,<. When U .
= Rn, then

we will assume the partial order (U ,R) defined by the relation R .
= {(x,y) ∈ Rn × Rn |

xi ≥ yi, ∀i ∈ [n]}, in which case, overloading notation, we denote ⪰R ,⪯R ,≃R ,≻R ,≺R by

≥,≤,=, >,<.

For any partially ordered set (U ,R), we define the infimum or lower bound (respectively,

supremum or upper bound) of a set X as an element x∗ ∈ U s.t. for all x ∈ X , x ⪰ x∗

(respectively, x ⪯ x∗), in which case we denote inf(X ) .
= x∗ (respectively, sup(X ) .

= x∗).

If the infimum inf(X ) (respectively, supremum sup(X )) is an element of X , we then write

min(X ) (respectively, max(X )).
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2.2.3 Correspondences

A relation R ⊂ X × Y from X to Y s.t. dom(R) = X is called a correspondence from

X to its codomain Y and is denoted by R : X ⇒ Y . A correspondence R : X ⇒ Y

can be understood as a map1 from X to subsets of Y , in which for all x ∈ X we write

x 7!7! R(x) ⊆ Y . As a correspondence is a relation (i.e., a set), throughout this thesis, we

will denote correspondences by calligraphic uppercase letters (e.g.,R). A correspondence

is said to be non-empty-valued (respectively, convex-valued) iff for all x ∈ X , R(x) is

non-empty (respectively, convex).

2.2.4 Functions

A relation f ⊆ X × Y from X to Y with the property that for every x ∈ X , there is a

unique y ∈ Y s.t. x ⪰R y is called a function (or mapping) from X to its codomain Y and

is denoted by f : X → Y . We call the element of y the value of f at x, and by abuse of

notation, we define x 7→ f(x)
.
= y Thus, while the value of f at x (i.e., y), and its image at x

(i.e., {y}) are both denoted by f(x), the meaning of f(x) will be clear from context. While a

function f : X → Y should be understood as a relation (i.e., a set), we will often be working

with the value (i.e., an element rather than a set) of f rather than its image f(x), and as such

we will often denote functions by a lowercase letter. In some cases, if we want to stress the

type of the value of the function, we will denote the function by the type of its value. For

instance, if the function is denoted by a bold lowercase letter (e.g., f ), then the mapping is

vector valued, and if the function is denoted by bold uppercase letter (e.g., F ), then the

mapping is matrix valued.

A function f : X → Y is said to be affine (or linear2) if for all α, β ∈ R and x, x′ ∈ X we

have f(αx + βx′) = αf(x) + βf(x′). We denote by 1X (x) the indicator function (or Dirac

1When understood as a point-to-set (or multivalued) map, a correspondence R : X ⇒ Y is denoted
R : X → 2

Y s.t. for all x ∈ X , R maps x to subsets Y , i.e., x 7!7! R(x) ⊆ Y . While some authors have with
authority argued the ill-posedness of such a definition (see page 1 of Dieudonné (1960)), such a view can be
helpful in obtaining many theoretical results.

2We will not be making a distinction between the two concepts.
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delta measure) for a set X , with value 1 if x ∈ X and 0 otherwise. We denote by χX (x) the

characteristic function for a set X , with value 0 if x ∈ X and∞ otherwise.

2.2.5 Cardinality

Consider a function f : X → Y from X to Y .

f is called injective (or one-to-one) iff f(x) = f(x) implies x = y .

f is called surjective (or onto) iff range(f) = Y .

f is called bijective iff it is injective and surjective.

If X and Y are non-empty sets, we define the following expressions:

card(X ) ≤ card(Y) card(X ) ≥ card(Y) card(Y) = card(X )

to mean that there exists f : X → Y which is injective, surjective or bijective respectively.

Additionally, we define card(X ) < card(Y) (or card(Y) > card(X )) to mean card(X ) ≤

card(Y) but not card(X ) = card(Y).

Consider a set X . X is countable iff card(X ) ≤ card(N) and infinite iff card(X ) ≥ card(N).

X is countably infinite iff it is countable and infinite. A set X is said to be finite iff

card(X ) < card(N). A finite set X is said to have cardinality n iff card(X ) = card([n]), in

which case we write card(X ) .= n.3

2.2.6 Sequences

A function f : N++ → X from the set of positive integers N++ to a set X is called a sequence

of points in X , and denoted {x(n)}n
.
= {f(n)}n or (x(n))n

.
= (f(n))n. While we denote a

sequence as a tuple or a collection, it should always be understood as a function. Although

we often denote elements of a sequence by superscripts with round brackets, e.g, x(n), to

3While this notation might suggest that card(·) is a function, such an interpretation is only appropriate for
finite sets for which cardinality can be interpreted as the number of elements in the the set, and should be
avoided for infinite sets.

33



stress the sequential aspect of sequences, a sequence can also be denoted by lower or upper

scripts without brackets, e.g., xn and xn.

2.2.7 Infinite Cartesian Product

Given an infinite collection of sets {Xi}i∈I (i.e., I is infinite), the Cartesian product of the

Xis is defined as:

×
i∈I
Xi

.
=

{
f : I →

⋃
i∈I
Xi

}
(2.1)

We note that this definition of the Cartesian product for infinite collections of sets does not

agree with the definition of the Cartesian product for finite collections of sets. As such,

while for simplicity we will use the same notational convention for both, the definition of

the operator×i∈I for infinite I should be understood as distinct from the one for finite I.

This distinction will be clear from context throughout this thesis. With this definition in

hand, when for all i ∈ I, Xi = Y , notice that×i∈I Xi =×i∈I Y = YX = {f : X → Y}. As

such, we denote YX .
= {f : X → Y} the set of all functions from X to Y .
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2.3 Metric Spaces

A metric space is a tuple (M, d) that consists of a setM, and a function d :M×M→ R+

called a metric which takes as input any two points inM and outputs a value called the

distance between those two points such that the following hold:

1. (Non-Degeneracy) d(x, y) = 0 iff x = y, ∀x, y ∈M

2. (Triangle Inequality) d(x, z) ≤ d(x, y) + d(y, z), ∀x, y, z ∈M

3. (Symmetry) d(x, y) = d(y, x), ∀x, y ∈M

A sequence {x(n)}n∈N ⊆ M is said to converge to some x ∈ M if for every ε > 0, there

exists an integer n ∈ N s.t. for all integers m ≥ n we have that d(x(m), x) ≤ ε. The point to

which the sequence converges is called its limit. When the metric space is clear from context,

if the sequence {x(n)}n∈N ⊆ M converges to x ∈ M, we then write limn→∞ x(n) = x or

x(n) → x. A sequence {x(n)}n∈N ⊂M is said to be a Cauchy sequence if for all ϵ > 0, there

exists n ∈ N such that for all integers n,m > n, we have d(x(n), x(m)) < ϵ.

A setX is said to be closed if for any convergent sequence {x(n)}n∈N ⊆ X s.t. x(n) → x ∈M,

we have x ∈ X . A set X is said to be open if its complementM\ X is closed. For any set

X , we define the distance of any point x to the set X as d(x,X ) .= minx′∈X d(x, x
′). We also

define the diameter of a set by diam(X ) .= maxx,x′∈X d(x, x
′). A set X is said to be bounded

iff diam(X ) <∞.

Throughout this thesis, we will be concerned only with complete metric spaces. A subset

X ⊆M ofM is said to be complete if every Cauchy sequence {x(n)}n∈N ⊂ X converges,

i.e., x(n) → x ∈ M, and its limit x ∈ X . A metric space (M, d) is said to be complete if

M is complete. We note that any closed subset of a complete metric space is complete. A

common example of a complete metric space is the Euclidean (metric) space (Rn, d) with

the Euclidean metric d(x,y) .=
√∑n

i=1(xi − yi)2.

For any ε ≥ 0, we write Bε[x] = {x′ ∈ M | d(x, x′) ≤ ε} and Bε(x) = {x′ ∈ M | d(x, x′) <

ε} to denote the closed and open ε-ball centered at x ∈M, respectively. A point x ∈ X is
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called an interior point of X , if there exists ε > 0 s.t. Bε(x) ⊆ X . The interior int(X ) of a set

X consists of the set of all interior points of X . The relative interior of a set X consists of the

interior of X within its affine hull, i.e., relint(X ) .
= {x ∈ X | ∃ε > 0,Bε(x) ∩ aff(X ) ⊆ X}

A set X ⊆M is said to be totally bounded if for every ε > 0, it can be covered by finitely

many open ε-balls. A set X ⊆M is said to be compact if it is complete and totally bounded.

By the Heine-Borel Theorem, any closed and bounded subset of Rn is compact.

A relation R ⊆ X × Y is upper (or outer4) hemicontinuous if for any sequence

{(x(n), y(n))}n∈N+
⊂ X × Y such that (x(n), y(n))→ (x, y) and x(n) ⪰ y(n) for all n ∈ N+, it

also holds that x ⪰ y. Note that ifR is a compact set, then it is upper hemicontinuous. A

relation R ⊆ X × Y is inner (or lower) hemicontinuous if for any y ∈ Y and sequence

{x(n)}n∈N+
⊆ X such that x(n) → x and x ⪰ y, there exists {y(n)}n∈N+

⊆ Y s.t. x(n) ⪰ y(n)

for all n ∈ N+ and y(n) → y. A relation is said to be continuous if it is both upper and

lower hemicontinuous, or equivalently if for any sequence {(x(n), y(n))}n∈N+
⊂ X × Y s.t.

x(n) → x and x(n) ⪰ y(n) for all n ∈ N+, it also holds that y(n) → y and x ⪰ y.

Since any correspondence is a relation, we can define (upper and lower) hemicontinuity for

correspondences analogously. A correspondenceR : X ⇒ Y is said to be upper (or outer)

hemicontinuous if for any sequence {(x(n), y(n)}n∈N+
⊂ X×Y such that (x(n), y(n))→ (x, y)

and y(n) ∈ R(x(n)) for all n ∈ N+, it also holds that y ∈ R(x). A correspondenceR : X ⇒ Y

is said to be lower (or inner) hemicontinuous if for any y ∈ Y and sequence {x(n)}n∈N+
⊂ X

such that x(n) → x and y ∈ R(x), there exists {y(n)}n∈N+
⊂ Y s.t. y(n) ∈ R(x(n)) for all

n ∈ N+ and y(n) → y. A correspondence R : X ⇒ Y is continuous if for any sequence

{x(n)}n∈N+
⊂ X such that x(n) → x, it holds thatR(x(n))→ R(x). A correspondence is said

to be closed-valued (respectively, compact-valued / convex-valued / singleton-valued)

iff for all x ∈ X ,R(x) is closed (respectively, compact / convex / a singleton).

For functions, the analogous definitions of upper and lower hemicontinuous relations can

be shown be equivalent, and as such considering only continuity becomes enough. In

4Note that certain authors make a distinction between upper and outer hemicontinuity by adopting a weaker
definition of outer hemicontinuity (see, for instance Border (2010)). We will use these two terms interchangeably.
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particular, a function f is continuous if for all sequences {x(n)}n∈N s.t. x(n) → x ∈ X , it

holds that f(x(n))→ f(x). Equivalently, a function f : X → Y is said to be continuous if for

all x ∈ X and ε > 0, there exists δ > 0 s.t. for all y ∈ X , if d(x, y) < δ, then d(f(x), f(y)) < ϵ.
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2.4 Normed Spaces

A normed (vector) space is a tuple (X , ∥·∥) that consists of a (vector) space X and a function

∥·∥: X → R+ called a norm such that the following hold:

1. (Normalized) ∥x∥= 0 iff x = 0, ∀x ∈ X

2. (Homogeneity) ∥cx∥= |c|∥x∥, ∀c ∈ R, x ∈ X

3. (Triangle Inequality) ∥x + y∥≤ ∥x∥+||y||, ∀x, y ∈ X

Note that X can be any set that satisfies the axioms of vector spaces (e.g., X can be a set

of functions). Any normed space (X , ∥·∥) is a metric space since any norm ∥·∥ defines the

induced metric d(x, y) = ∥x − y∥ such that (X , d) is a valid metric space called the metric

space induced by (X , ∥·∥). That is, any normed space is also a metric space, and as such

the definitions provided in Section 2.3 all apply to normed spaces.

The canonical example of a normed vector space is the ℓpn normed space (Rn, ∥·∥p) defined

by the p-norm ∥x∥p
.
= p
√∑n

i=1 x
p
i . For p→∞, we obtain the uniform (or sup) norm ∥·∥∞,

which is defined as ∥x∥∞
.
= maxi∈[n]{|xi|}. Throughout this thesis, we will mostly be

working with the Euclidean (normed) space (or ℓ2n normed space) (Rn, ∥·∥2). If the metric

space (X , d) induced by (X , ∥·∥) is complete, then (X , ∥·∥) is called a Banach space (or a

complete normed space). Note that any ℓpn space is a Banach space.

Let (X , ∥·∥X ) and (Y, ∥·∥Y) be normed spaces. A function f : (X , ∥·∥X ) → (Y, ∥·∥Y) or

correspondence R : (X , ∥·∥X ) ⇒ (Y, ∥·∥Y) between normed spaces is called an operator.

We often write f : X → Y and R : X ⇒ Y , respectively, when the normed space is clear

from context.
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A seminal theorem in functional analysis is the Kakutani-Glicksberg Fixed Point Theorem,5

which provides sufficient conditions for a fixed point of a correspondenceR : X ⇒ X , i.e.,

a point x ∈ X s.t. x ∈ R(x) to exist.

Theorem 2.4.1 [Kakutani-Glicksberg Fixed Point Theorem (Kakutani, 1941; Glicksberg,

1952)].

Consider a normed space (U , ∥·∥), and a non-empty, compact, convex set X ⊆ U . If

R : X ⇒ X is upper hemicontinuous, and non-empty-, compact, and convex-valued, then

there exists a fixed point x ∈ X s.t. x ∈ R(x).

5While Kakutani was concerned only with Euclidean spaces (Kakutani, 1941), Glicksberg subsequently
generalized Kakutani’s results to convex Hausdorff linear topological spaces (see Section 1 of Glicksberg (1952)
for the relevant definitions). Hence, since any normed (vector) space is a convex Hausdorff linear topological
space (see, for instance Section 5 of Folland (1999)), we state Glicksberg’s result for the special case of normed
spaces, which suffices for all applications of this theorem in this thesis. Since any Euclidean space is a normed
space, the version of the theorem stated here generalizes Kakutani’s to non-Euclidean spaces (e.g., functional
spaces). Additionally, note that Glicksberg (1952) states his result for closed correspondences, but as the domain
and range of the correspondence is compact-valued, it suffices to assume upper hemicontinuity instead, as any
upper hemicontinuous and compact-valued correspondence is closed (see Section 2.3).
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2.5 Inner Product Spaces

An inner product space is a tuple (X , ⟨·, ·⟩) that consists of a vector space X and a function

⟨·, ·⟩ : X × X → R called an inner product (or scalar product) such that the following hold:

1. (Normalized) ⟨x, x⟩ > 0, ∀x ̸= 0

2. (Symmetry) ⟨x, y⟩ = ⟨y, x⟩, ∀x, y ∈ X

3. (Bilinear) ⟨ax + bx′, y⟩ = a ⟨x, y⟩+ b ⟨x′, y⟩, ∀a, b ∈ R ∈ x, x′, y ∈ X

Any inner product space (X , ⟨·, ·⟩) is a normed space (and hence, in turn, a metric space)

since any inner product ⟨·, ·⟩ defines the induced norm ∥x∥ .=
√
⟨x, x⟩ such that (X , ⟨·, ·⟩) is

a valid normed (vector) space called a pre-Hilbert space (X , ∥·∥). As such, the definitions

provided in Section 2.3 and Section 2.4 all apply to inner product spaces. A pre-Hilbert

space that is complete is called a Hilbert space. Throughout this thesis, unless otherwise

mentioned, we will be working with the ℓ2n inner product spaces (Rn, ⟨·, ·⟩) where ⟨x,y⟩ .=∑n
i=1 xiyi, whose Hilbert space is given by the ℓ2n normed space which itself corresponds to

the Eucliean metric space.
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2.6 Measure and Probability Spaces

A measurable space (X ,F) consists of a set X and a collection F of subsets of X which

satisfies the following conditions:

1. (Closure under finite unions) for all B1, . . .Bn ∈ F,
⋃n
i=1 Bi ∈ F

2. (Closure under complements) for all B ∈ F, Bc ∈ F,

Let (X ,FX ) and (Y,FY) be two measurable spaces. A function f : X → Y is said to be a

measurable iff for all B ∈ FY , the inverse image of B is contained in FX , i.e., f−1(B) ∈ FX .

If f : X → Y is a measurable function, we will often write f : (X ,FX )→ (Y,FY).

A measure µ : F → R+ on a measurable space (X ,F) is a function which satisfies the

following conditions:

1. (Normalized) µ(∅) = 0

2. (Countable additivity) for all pairwise disjoint collection of sets {Bi}∞i=1 ⊆ F,

µ(
⋃∞
i=1 Bi) =

∑∞
i=1 µ(Bi)

A measure space (X ,F, µ) is a triple which consists of a measurable space (X ,F) and a

measure µ on (X ,F). Let X be any set and let (X ,F) be an associated measurable space.

We write ∆(X ,F) .
= {µ : (X ,F) → [0, 1]} to denote the set of probability measures on

(X ,F). When F is clear from context, we simply write ∆(X ). We also define the support

of a measure µ ∈ ∆(X ) as supp(µ) .= {x ∈ X : µ(x) > 0}.

A simple function s : X → R+ is a measurable function of the form s(x)
.
=
∑n

i=1 αi1Yi
(x)

for some {αi}i ⊆ R+ and {Yi}i ⊆ F. The (Lebesgue) integral of a simple function s over a

set B ∈ F is defined as:

∫
x∈B

s(x)dµ(x)
.
=

n∑
i=1

αiµ(Yi ∩ B) (2.2)
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The (Lebesgue) integral of a positive measurable function f : X → R+ is defined as:∫
x∈B

f(x)dµ(x)
.
= sup

{∫
x∈B

s(x)dµ(x) | s is a simple function and ∀x ∈ X , s(x) ≤ f(x)
}

(2.3)

We then extend this definition of the (Lebesgue) integral to any measurable function

f : X → R by defining:∫
x∈B

f(x)dµ(x)
.
=

∫
x∈B

max{f(x), 0} dµ(x)−
∫
x∈B

max{−f(x), 0} dµ(x) (2.4)

When clear from context, we will often denote
∫
x∈B f(x)dµ(x) by

∫
B sdµ or

∫
B f(x)dx.

A measurable function f : X → R is integrable on B iff
∫
x∈B|f(x)|dµ(x) < ∞, where

x 7→ |x| is the absolute value function. We note that any bounded measurable function

f : X → R is integrable on B if µ(B) <∞. If f is integrable on X itself, then f is said to be

integrable.

A probability space is a measure space (O, E , µ) where

1. O is called the sample space and its elements are called outcomes

2. E is the event space which consists of sets of outcomes

3. µ : F → [0, 1] is a probability measure which satisfies µ(F) = 1

Given a measurable space (X ,F) and a probability space (O, E , µ), a random variable

is a measurable function X : (O, E) → (X ,F). A random variable maps outcomes in a

probability space to elements of a measurable space, allowing us to quantify the occurrence

of random outcomes. Throughout this thesis, we will denote random variables with normal

font capital letters.

The probability that a random variable X takes on a value x ∈ X is denoted by:

PX∼µ(X = x)
.
= µ({o ∈ O | X(o) = x}) (2.5)
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Similarly, the probability that a random variable X takes on a value in the set Y ⊆ X is

denoted by:

PX∼µ(X ∈ Y)
.
= µ({o ∈ O | X(o) ∈ Y}) (2.6)

The expectation of a random variable X is defined as:

E
X∼µ

[X]
.
=

∫
O
Xdµ (2.7)
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2.7 (Sub)differential Calculus

Let (X , ∥·∥X ) and (Y, ∥·∥Y) be normed spaces. Consider an operator f : (X , ∥·∥X ) →

(Y, ∥·∥Y). A linear operator f : X → Y is said to be bounded if there exists c <∞ s.t. for all

x ∈ X ,

∥f(x)∥X ≤ c∥x∥Y (2.8)

The dual (vector) space X ∗ of any (vector) space X consists of all linear functions f :

X → R and is associated with a dual normed vector space (X ∗, ∥·∥∗X ) where ∥f∥∗X
.
=

sup x∈X
∥x∥≤1

∥f(x)∥X .

The directional (or Gâteau) derivative (Gâteaux, 1913) of an operator f : X → Y at x̂ ∈ X

in the direction of a ∈ X is a linear function ∇x̂f(a) ∈ X ∗ on X s.t.:

∇af(x̂) = lim
t→0

f(x̂ + ta)− f(x̂)
t

(2.9)

f is said to be differentiable, if for all x̂, a ∈ X , the directional derivative ∇af(x̂) exists.

f is said to be continuously differentiable if for all a ∈ X , x 7→ ∇af(x) is continuous. If

X ⊆ Rn and Y .
= R, overloading notation, we define the partial derivative of the function

f : X → R w.r.t. xi ∈ R for all i ∈ [n] at x̂ ∈ X as ∇xi
f(x̂)

.
= ∇ji

f(x̂), and the gradient (or

Fréchet derivative) of f : X → R at x̂ ∈ X as ∇f(x̂) = ∇xf(x̂)
.
= (∇xi

f(x̂))ni=1.

The (Clarke) subdifferential (Clarke, 1990) of a function f : X → Y is a set

Df(x) ⊆ X ∗ of linear functions on X defined as Df(x) .
= conv

{
limk→∞∇f(x(k)) |

∃x(k) → x s.t. x(k) ∈ dom(∇f))
}

. Analogously, we define the directional (Clarke) sub-

differential Dx w.r.t. x ∈ X by replacing the gradient operator in the definition by the

directional derivative, i.e., ∇x . To simplify notation, we often write ∂xf(x̂) to refer to an ar-

bitrary subgradient (i.e., an element of the subdifferential) of f at x, e.g., ∂xf(x̂) ∈ Dxf(x̂).

When f is continuously differentiable, by the definition of continuity, the subdifferential

is singleton-valued and for all x̂ ∈ X , Dxf(x̂)
.
= {∇xf(x̂)}. A function f is said to be

subdifferentiable iff its subdifferential is non-empty for all points in its domain, i.e., for
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all x ∈ X , ∂xf(x) ̸= ∅. We note that a function is subdifferentiable if it is locally-Lipschitz

continuous6 (Clarke, 1990). Throughout this thesis we will work only with subdifferentiable

functions; as such, for any function f : X → Y , we define its subdifferential correspon-

dence Df : X ⇒ Y as the correspondence that takes as input a point in the domain x ∈ X ,

and outputs the subdifferential Df(x) of f at x. We define the directional subdifferential

correspondence Dxf : X ⇒ Y of any subdifferentiable function f similarly. We also note

that for any Lipschitz-continuous function f, the subdifferential correspondence Df is

upper hemicontinuous, non-empty-, and compact-valued (Clarke, 2007). For any contin-

uous and convex function f : X → R, the subdifferential correspondence Df is upper

hemicontinuous, non-empty-, compact-, and convex-valued (see Theorem 24.4 of Pryce

(1973)).

6We refer the reader to Section 2.8 for a definition.
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2.8 Primitive Function Structures

In this section, we introduce the key definitions that will be used to derive the results in

this thesis. These definitions are refinements of the notions of continuity and convexity for

functions, and monotonicity for correspondences.

Consider a complete order (U ,R) and a function f : U → R. f is said to be increasing (re-

spectively, decreasing) over X ⊆ U iff for all x, y ∈ X s.t. x ⪰R y , f(x) ≥ f(y) (respectively,

f(x) ≤ f(y)). f is said to be strictly increasing (respectively, strictly decreasing) iff for all

x, y ∈ X s.t. x ≻R y , f(x) > f(y) (respectively, f(x) < f(y)).

Monotonicity Properties of Correspondences

To obtain our computational results, we will rely on generalized monotonicity properties

of correspondences. Let (X , ⟨·, ·⟩) be an inner product space. Consider a correspondence

R : X ⇒ X .

Definition 2.8.1 [Weakly-Monotone/Dissipative Correspondences].

R is µ-weakly-monotone with modulo of monotonocity µ ∈ R iff

〈
y′ − y, x′ − x

〉
≥ −µ∥x − x′∥2 ∀y ∈ R(x), y′ ∈ R(x′)

R is ν-weakly-dissipative with modulo of dissipativity ν ∈ R iff

〈
y′ − y, x′ − x

〉
≤ ν∥x − x′∥2 ∀y ∈ R(x), y′ ∈ R(x′)

Note that in the above definition when µ < 0 (respectively, ν < 0), a µ-weakly-monotone (re-

spectively, ν-weakly-dissipative) correspondence is often called (−µ)-strongly-monotone

(respectively, (−ν)-strongly-dissipative.

In the special case that µ .
= 0, and ν

.
= 0, we recover the definitions of monotone and

dissipative operators:
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Definition 2.8.2 [Monotone/Dissipative Correspondences].

R is monotone iff:〈
y′ − y, x′ − x

〉
≥ 0 ∀y ∈ R(x), y′ ∈ R(x′)

R is dissipative iff:〈
y′ − y, x′ − x

〉
≤ 0 ∀y ∈ R(x), y′ ∈ R(x′)

Definition 2.8.3 [Pseudomonotone/Pseudodissipative].

R is pseudomonotone iff:〈
y′, x′ − x

〉
≥ 0 implies

〈
y, x − x′

〉
≥ 0 ∀y ∈ R(x), y′ ∈ R(x′)

R is pseudodissipative iff:〈
y′, x′ − x

〉
≤ 0 implies

〈
y, x − x′

〉
≤ 0 ∀y ∈ R(x), y′ ∈ R(x′)

Definition 2.8.4 [quasimonotone/quasidissipative].

Consider a correspondenceR : X ⇒ X .

R is quasimonotone iff:〈
y′, x′ − x

〉
> 0 implies

〈
y, x − x′

〉
≥ 0 ∀y ∈ R(x), y′ ∈ R(x′)

R is quasidissipative iff:〈
y′, x′ − x

〉
< 0 implies

〈
y, x − x′

〉
≤ 0 ∀y ∈ R(x), y′ ∈ R(x′)

We note the following relationships among these properties:

monotone =⇒ pseudomonotone =⇒ quasimonotone (2.10)

dissipative =⇒ pseudodissipative =⇒ quasidissipative (2.11)

Lipschitz Properties of Functions

Let (X , ∥·∥X ) and (Y, ∥·∥Y) be normed spaces. Consider a function f : (X , ∥·∥X )→ (Y, ∥·∥Y).

We will first consider refinements of the notions of continuity and continuous differentia-

bility, which we will use to derive the complexity results in this thesis.
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Definition 2.8.5 [Lipschitz-Continuity].

A function f : X → Y is said to be ℓf-Lipschitz-continuous on S ⊆ X iff for all x1, x2 ∈ X

∥f(x1)− f(x2)∥Y ≤ ℓf ∥x1 − x2∥X , (2.12)

When S = X , then f is simply called ℓf-Lipschitz-continuous.

We note that any continuously differentiable function f on a non-empty and compact set S

is guaranteed to be ℓ-Lipschitz-continuous on S with ℓ .
= maxx∈S∥∇f(x)∥X ∗ .

An important generalization of Lipschitz continuity is local-Lipschitz-continuity, a class of

functions which are (Clarke) subdifferentiable.

Definition 2.8.6 [Local-Lipschitz-Continuity].

A function f : X → Y is said to be ℓf-locally Lipschitz-continuous iff there exists ε > 0 s.t.

for all x ∈ X , f is ℓf-Lipschitz continuous on Bε(x).

We note that any locally Lipschitz continuous function is continuous, but not vice versa.

An important refinement of continuous differentiability which has been used extensively in

prior work (see, for instance, Daskalakis et al. (2020b)) is the notion of Lipschitz-smoothness,

which requires the gradient of a function to Lipschitz-smooth.

Definition 2.8.7 [Lipschitz-Smoothness].

A function f : X → Y is said to be λ-Lipschitz-smooth on S ⊆ X iff for all x1, x2 ∈ X

∥∇f(x1)−∇f(x2)∥Y ≤ λ ∥x1 − x2∥X , (2.13)

When S = X , then f is simply said to be λ-Lipschitz-smooth.

Convexity Properties of Functions

Definition 2.8.8 [Convex/Concave Function].

Consider a function f : X → R.

f is convex iff for all λ ∈ [0, 1] and x, x′ ∈ X ,

f(λx + (1− λ)x′) ≤ λf(x) + (1− λ)f(x′) .

48



f is concave iff for all λ ∈ [0, 1] and x, x′ ∈ X ,

f(λx + (1− λ)x′) ≥ λf(x) + (1− λ)f(x′) .

f is said to be affine iff it is both convex and concave.

Note that, a function f is convex iff −f is concave.

When f is convex, its subdifferential correspondence Df is called the convex subdifferen-

tial and is given by Df(x) .= {x∗ ∈ X ∗ | f(x′) ≥ f(x) + ⟨x∗, x′ − x⟩ ,∀x′ ∈ X} (see Theorem

25.6 of Ralph Tyrell (1997)). Similarly, when f is concave, its Clarke subdifferential corre-

spondence Df is called the concave subdifferential and is given by Df(x) .
= {x∗ ∈ X ∗ |

f(x′) ≤ f(x) + ⟨x∗, x′ − x⟩ , ∀x′ ∈ X}.

Definition 2.8.9 [Quasiconvex/Quasiconcave Functions].

Consider a function f : X → R.

f is quasiconvex iff for all λ ∈ (0, 1) and x, x′ ∈ X ,

f(λx + (1− λ)x′) ≤ max{f(x), f(x′)} . (2.14)

f is quasiconcave iff for all λ ∈ (0, 1) and x, x′ ∈ X ,

f(λx + (1− λ)x′) ≥ min{f(x), f(x′)} . (2.15)

In addition, a function f is quasiconvex iff −f is quasiconcave.

We note that a function f is quasiconvex iff its sublevel sets, i.e., the set {x ∈ X | f(x) ≤ α}

for all α ∈ R, is convex. Similarly, a function f is quasiconcave iff its superlevel set, i.e., the

set {x ∈ X | f(x) ≥ α} for all α ∈ R, is convex. Quasiconvex and quasiconcave functions

are very useful in representing a class of continuous and convex sets or correspondences.

In particular, given metric spaces (X , dX ), (Y, dY), and some continuous quasiconvex

functions g1, . . . , gl : X × Y , then the correspondenceR(y)
.
= {x ∈ X | gi(x, y) ≤ 0, i ∈ [l]}

is continuous and convex (see Theorem 5.9 of Rockafellar and Wets (2009)).

Going beyond classes of convex/concave functions, this thesis will make use of notions of

weakly-convex/concave functions. The class of weakly-convex/concave functions were
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first introduced to the optimization literature in English by Nurminskii (1973), and have

become a class of functions of great interest in the optimization literature is the recent years

(see, for instance, Davis et al. (2018); Davis and Drusvyatskiy (2019); Lin et al. (2020)).

Definition 2.8.10 [Weakly-Convex/Weakly-Concave Functions].

Consider a function f : X → R.

f is µ-weakly-convex with modulus of convexity µ ∈ R, iff x 7→ f(x) + µ/2∥x∥2 is convex.

If µ < 0, then f is said to be (−µ)-strongly-convex.7

f is ν-weakly-concave with modulus of concavity ν ∈ R, iff x 7→ f(x)− µ/2∥x∥2 is concave.

If µ < 0, then f is said to be (−µ)-strongly-convex.

Remark 2.8.1 [Examples of Weakly-Convex/Concave Functions].

Naturally, the class of weakly-convex (respectively, weakly-concave) functions generalizes

strongly-convex (respectively, strongly-concave) functions, and convex (resp. concave)

functions.

More importantly, however, any ℓ-smooth function is both ℓ-weakly-convex and ℓ-weakly-

concave (Davis and Drusvyatskiy, 2019). Thus, in some sense, Lipschitz-smooth functions

can be interpreted as being weakly-affine (i.e., both weakly-convex and weakly-concave).

Nonetheless, despite Lipschitz-smooth functions being a very restricted subset of the class

of weakly-convex (respectively, weakly-concave) functions, they contain a very large class

of non-convex and differentiable functions. In fact, the class of Lipschitz-smooth functions

on a non-empty and compact domain contains, among others, all twice-continuously

differentiable functions. We refer the reader to Section 2.1 of Davis and Drusvyatskiy (2019)

and Section 4 of Vial (1983) for additional results and discussions on weak-convexity and

weak-concavity.

Remark 2.8.2 [Subdifferential of Weakly-Convex/Concave Functions].

As convex (respectively, concave) functions are locally Lipschitz continuous, so is their

difference, which in turn implies subdifferentiability by Theorem 3.1. of Clarke (2007).
7See, for instance, Section 9.1.2 of Boyd et al. (2004) for further characterizations.
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Thus, any weakly-convex (respectively, weakly-concave) function f is subdifferentiable

as it can be rewritten as the difference of two convex functions f + µ/2∥·∥2 and µ/2∥·∥2

(respectively, concave functions f − µ/2∥·∥2 and µ/2∥·∥2).

In addition, for any µ-weakly-convex (respectively, ν-weakly-concave) function f, its

subdifferential correspondence is given as

Df(x) .= D[f(x) + µ
2∥x∥

2]− µx
(
respectively, Df(x) = D[f(x)− ν

2∥x∥
2] + µx

)
,

whereD[f(x)+µ/2∥x∥2] (respectively,D[f(x)−ν/2∥x∥2] is the convex (respectively, concave)

subdifferential, since f(·) + µ/2∥·∥2 is convex (respectively, D[f(x)− ν/2∥x∥2] is concave).

An implication of this remark is that, as a subgradient of a convex/concave function can be

computed (or in the worst case approximated) easily (see, for instance Bertsekas (2011)) via

convex/concave subdifferential calculus rules, a subgradient of a weakly-convex/weakly-

concave function can also be computed easily. As such, as is standard in the literature (see

for instance Lin et al. (2020)), we will take the number of subgradient evaluations as the primitive

operation of our computational complexity results.

In addition, for weakly-convex and weakly-concave functions, we have the following

characterization introduced by Davis and Drusvyatskiy (see Lemma 2.1 of Davis and

Drusvyatskiy (2019)) whose proof we provide for completness. Note that as a function f

is µ-weakly-convex iff −f is µ-weakly-concave, an analogous characterization holds for

weakly-concave functions as well.

Lemma 2.8.1 [Characterization of Weakly-Convex-Functions].

Consider a function f : (X , ∥·∥) → R, and a modulus of convexity µ ∈ R. The following

statements are equivalent:

1. f is µ-weakly convex

2. The µ-weak secant inequality holds:

f(λx + (1− λ)x′) ≤ λf(x) + (1− λ)f(x′) + µλ(1− λ)
2

∥x − x′∥2 (2.16)
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3. The µ-weak subgradient inequality holds, i.e.,

f(x′) ≥ f(x) +
〈
∂f(x), x′ − x

〉
− µ/2∥x − x′∥2, ∀x, x′ ∈ X , ∂f(x) ∈ Df(x)

4. The subdifferential map is µ-weakly monotone, i.e.,〈
∂f(x′)− ∂f(x), x′ − x

〉
≥ −µ∥x − x′∥2 ∀∂f(x) ∈ Df(x), ∂f(x′) ∈ Df(x′)

Proof of Lemma 2.8.1

Fix µ ∈ R, and let f : X → R be a µ-weakly-convex function. We then have:

(1) ≡ (2):
From the definition of µ-weak convexity, we have for all x, x′ ∈ X and λ ∈ [0, 1]:

f(λx + (1− λ)x′) + µ/2∥λx + (1− λ)x′∥2 ≤ λ[f(x) + µ/2∥x∥2] + (1− λ)[f(x′) + µ/2∥x′∥2]
≤ λf(x) + (1− λ)f(x′) + λµ/2∥x∥2+(1−λ)µ/2∥x′∥2 .

Re-organizing the expression, we get:
f(λx + (1− λ)x′) ≤ λf(x) + (1− λ)f(x′) + λµ/2∥x∥2+(1−λ)µ/2∥x′∥2−µ/2∥λx + (1− λ)x′∥2 (2.17)

Now, notice that we have for all x, x′ ∈ X and λ ∈ [0, 1]:

λµ/2∥x∥2+(1−λ)µ/2∥x′∥2−µ/2∥λx + (1− λ)x′∥2

= λµ/2∥x∥2+(1−λ)µ/2∥x′∥2−µλ2/2∥x∥2−λ(1− λ)µ
〈
x, x′

〉
− (1−λ)2µ/2∥x′∥2

= λµ/2∥x∥2−µλ2/2∥x∥2+(1−λ)µ/2∥x′∥2−(1−λ)2µ/2∥x′∥2−λ(1− λ)µ
〈
x, x′

〉
= λ(1−λ)µ/2∥x∥2+λ(1−λ)µ/2∥x′∥2−λ(1− λ)µ

〈
x, x′

〉
=
λ(1− λ)µ

2
∥x − x′∥2

Hence, plugging the above into Equation (2.17), we get for all x, x′ ∈ X and λ ∈ [0, 1]:

f(λx + (1− λ)x′) ≤ λf(x) + (1− λ)f(x′) + λ(1− λ)µ
2

∥x − x′∥2

As all the inequalities are tight, the implication holds both ways.

(2) ≡ (3)

Re-organizing the terms in Equation (2.16), we have for all x, x′ ∈ X and λ ∈ [0, 1]:

f(λx + (1− λ)x′) ≤ λf(x) + (1− λ)f(x′) + λ(1−λ)µ/2∥x − x′∥2

f(x′ + λ(x − x′)) ≤ λf(x) + (1− λ)f(x′) + λ(1−λ)µ/2∥x − x′∥2

f(x′ + λ(x − x′))− f(x′) ≤ λ
[
f(x)− f(x′)

]
+ λ(1−λ)µ/2∥x − x′∥2
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Dividing both sides of the inequality by λ, for all x, x′ ∈ X and λ ∈ [0, 1] we have:

f(x′ + λ(x − x′))− f(x)
λ

≤ f(x)− f(x′) + (1−λ)µ/2∥x − x′∥2

Now, taking the limit as λ→ 0, we have for all x, x′ ∈ X the µ-subgradient inequality

for all possible subgradients:

lim
λ→0

f(x′ + λ(x′ − x))− f(x′)
λ

≤ f(x)− f(x′) + (1−λ)µ/2∥x − x′∥2

Note that left hand side is the definition of the Gâteau derivative. Hence, by varying

x ∈ X , we obtain all possible limits points of the Gâteau derivative. As this set

of limit points is closed and convex, it is equal to its convex hull, which is the

definition of the Clarke subdifferential. In addition, once again, as we have applied

no inequalities, the bounds are tight and the implication holds both ways.

(3) ≡ (4):

By the µ-subgradient inequality, we have the two following relations:

f(x′) ≥ f(x) +
〈
∂f(x), x′ − x

〉
− ν/2∥x − x′∥2, ∀x, x′ ∈ X , ∂f(x) ∈ Df(x)

f(x) ≥ f(x′) +
〈
∂f(x′), x − x′

〉
− ν/2∥x − x′∥2, ∀x, x′ ∈ X , ∂f(x′) ∈ Df(x′)

Subtracting the first inequality from the second, and re-organizing terms, we obtain

the µ-weak-monotonicity condition. The reverse direction follows in the same way.
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2.9 Constrained Optimization Background

2.9.1 The Primal Problem

Consider any Euclidean metric space (Rn, d). A (constrained) optimization problem

C .
= (n, l,X , f, g), denoted (X , f, g) when n and l are clear from context, consists of an

objective function f : Rn → R, l ∈ N constraint functions g1, . . . , gl : Rn → R, and a basic

feasible set X ⊆ Rn, which together define the following maximization problem called the

Primal Problem:8

Primal Problem

max
x∈X

f(x) (2.18)

constrained by gi(x) ≥ 0 ∀i ∈ [l] (2.19)

For convenience, we define g
.
= (gi)

l
i=1 : Rn → Rl, and consistent with the partial order we

defined on Euclidean vector spaces, we will often write g(x) ≥ 0 to mean for all i ∈ [l],

gi(x) ≥ 0.

We define the feasible set feas(X , f, g) of the optimization problem (X , f, g) as:

feas(X , f, g) .= {x ∈ X | g(x) ≥ 0}

A point x ∈ Rn is said to be feasible if it is an element of the feasible set feas(X , f, g). Note

that the primal problem can be restated as maxx∈feas(X ,f,g) f(x). As such, by Weierstrass’

Extreme Value Theorem, under the following assumption, which we assume throughout

this section, a solution to the primal problem exists:

Assumption 2.9.1 [Existence of Solution].

Consider an optimization problem (X , f, g). Assume

1. f : X → R is continuous

2. feas(X , f, g) is non-empty and compact
8For convenience, we focus on maximization problems. This convention is without loss of generality, since

any maximization problem can be recast as a minimization by negating the objective functions.
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We note that Part 2 of Assumption 2.9.1, can be guaranteed under the assumption that g is

continuous, and the feasible set feas(X , f, g) is non-empty.

2.9.2 The Lagrangian and the Dual Problem

For any optimization problem (X , f, g), we define the Lagrangian (function) ℓ : Rn×Rl+ →

R as:

ℓ(x,λ)
.
= f(x) +

l∑
i=1

λigi(x)

where λ
.
= (λ1, . . . , λl) ∈ Rl+ are called slack variables (or KKT multipliers). These vari-

ables are called slack variables as they relax the constrained problem to an unconstrained

one, and then, by selecting their values wisely, we obtain a function whose maximum over

X corresponds exactly to that of the primal problem. More formally, taking the infimum of

the Lagrangian over the respective domains of the slack variables, we have:

inf
λ≥0

ℓ(x,λ) = inf
λ≥0

[
f(x) +

l∑
i=1

λigi(x)

]

= f(x) + inf
λ≥0

l∑
i=1

λigi(x)

= f(x) +

l∑
i=1

inf
λi≥0

λigi(x) (2.20)

Note that for all i ∈ [l],

inf
λi≥0

λigi(x) =

 0 if gi(x) ≥ 0

∞ Otherwise

Plugging back into Equation (2.20), we then have:

inf
λ≥0

ℓ(x,λ) =

 f(x) if g(x) ≤ 0

∞ Otherwise

That is, by taking the infimum of the Lagrangian over the slack variables λ, we obtain a

function where for all feasible points x ∈ feas(X , f, g), the value of function coincides with

the value of the objective f, and for all infeasible points x′ /∈ feas(X , f, g), the value of the
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function is∞. As a result, we have:

max
x∈feas(X ,f,g)

f(x) = max
x∈X

inf
λ≥0

ℓ(x,λ)

The above equality suggests that if we could switch the order of the max and inf on the

right hand-side, we could re-express primal problem, as a minimization problem called the

dual problem. To this end, the Lagrangian dual function ℓ∗ : Rl+ → R̄ is defined as:

ℓ∗(λ) = sup
x∈X

ℓ(x,λ) (2.21)

The dual problem associated with any optimization problem (X , f, g) is then defined as:

inf
λ
ℓ∗(λ) (2.22)

constrained by λ ≥ 0 (2.23)

A tuple of slack variables λ ∈ Rl are said to be feasible iff λ ≥ 0.

We say that weak duality holds iff maxx∈X infλ≥0 ℓ(x,λ) ≤ infλ≥0 supx∈X ℓ(x,λ). We

say that strong duality holds iff maxx∈X minλ≥0 ℓ(x,λ) = minλ≥0 maxx∈X ℓ(x,λ). Note

that for strong duality the infimum and supremum are replaced by a minimum and

maximum since under Assumption 2.9.1 supx∈X infλ≥0 ℓ(x,λ) is well-defined, and as such

for equality to hold the supremum and infimum must be well-defined. Without the need

for any additional assumptions, we can show that weak duality holds for any optimization

problem.

Theorem 2.9.1 [Weak Duality].

Given an optimization problem (X , f, g), under Assumption 2.9.1, weak duality holds.

Proof

inf
λ≥0

ℓ(x,λ) ≤ ℓ(x,λ′) ∀x ∈ X ,λ′ ≥ 0

sup
x∈X

inf
λ≥0

ℓ(x,λ) ≤ sup
x∈X

ℓ(x,λ′) ∀λ′ ≥ 0

sup
x∈X

inf
λ≥0

ℓ(x,λ) ≤ inf
λ≥0

sup
x∈X

ℓ(x,λ)
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In contrast, to ensure that strong duality holds, we have to restrict the class of optimization

problems considerably, namely to regular convex optimization problems (i.e., optimization

problems where f and g are convex, and for which a constraint qualification such as Slater’s

condition is satisfied). For example, we can make the following additional assumption:

Assumption 2.9.2 [Convex optimization and Slater’s condition].

Consider an optimization problem (X , f, g). Suppose that:

1. f is concave

2. g is concave

3. (Slater’s condition) There exists an feasible relative interior point x̂ ∈

relint(feas(X , f, g)), i.e., x̂ ∈ int(X ) and for all c ∈ [l], if gc is affine then gc(x̂) ≥ 0,

and gc(x̂) > 0 otherwise.

As the proof of the strong duality theorem is more involved, we state the theorem without

proof and refer the reader to page 234 of Boyd et al. (2004). Briefly, the theorem is usually

proven via the Separating Hyperplane Theorem.

Theorem 2.9.2 [Strong duality via Slater’s condition].

Consider an optimization problem (X , f, g) and suppose that Assumptions 2.9.1 and 2.9.2

are satisfied, then strong duality holds.

When strong duality holds, for any solution x∗ ∈ X of the primal problem, we are

guaranteed the existence of some associated optimal slack variables λ∗ ∈ Rl+ s.t. λ∗ ∈

argminλ∈Rl
+
ℓ(x∗,λ), which are solutions to the dual problem. More importantly, un-

der strong duality, we can derive necessary conditions that characterize the any tuple

(x∗,λ∗) ∈ X × Rl+ of primal and dual problem solutions, known as the Kahn-Karush-

Tucker (KKT) conditions (Kuhn and Tucker, 1951). For convenience, we state the next

theorem under the simplifying assumption that X .
= Rn.9

9When X can be represented by finitely many (in)equality constraints, this assumption is without loss of
generality, as X can be represented by the (in)equality constraint functions g. Alternatively, if a relative interior
solution to the primal problem exists, then the assumption is also without loss of generality. In addition, the
KKT Theorem can be generalized to arbitrary X ; however, as this more general characterization will not be
used in this thesis, we omit it here.
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Theorem 2.9.3 [Karush–Kuhn–Tucker theorem].

Consider a Euclidean normed vector space (Rn, ∥·∥), and an associated optimization prob-

lem (X , f, g). Suppose that Assumption 2.9.1 and Assumption 2.9.2 hold, and that in

addition, f and g are locally Lipschitz continuous. Then, any tuple (x∗,λ∗) ∈ X × Rl of

primal and dual problem solutions must satisfy the following conditions:

1. (Stationarity) 0 ∈ Df(x∗) +
∑l

i=1 λ
∗
iDgi(x∗)

2. (Complementary Slackness) for all i ∈ [l], λ∗i gi(x
∗) = 0

3. (Primal Feasibility) g(x∗) ≥ 0

4. (Dual Feasibility) λ ≥ 0

In the above theorem, if we assume that Assumption 2.9.2, holds, then the conditions are

also sufficient.

Often, we also are interested in understanding the convexity properties of set of solutions to

the primal and dual problems. A proof of the following result can be obtained by combining

the results in Chapter 6, Section 3 of Berge (1997) and in Proposition 4.1 of Kyparisis (1985).

Theorem 2.9.4 [Properties of the primal solution set].

Given an optimization problem (X , f, g). Assume

1. f is continuous, quasiconcave

2. feas(X , f, g) is non-empty, compact, and convex.

Then, the set of solutions to the primal problem is non-empty, compact, and convex.

If we instead assume Assumption 2.9.2, we obtain a characterization of both the primal

and the dual solution sets (see Theorem 5 of Rockafellar (1971)).

Theorem 2.9.5 [Properties of the saddle point solution set].

Consider an optimization problem (X , f, g). Suppose that Assumption 2.9.1 and Assump-

tion 2.9.2 hold. Then, the set of solutions to the primal and dual problem is non-empty,

compact, and convex.
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2.9.3 Parametric Constrained Optimization

Many problems of interest can be posed as parametric constrained optimization problems,

i.e., optimization problems (X , f, g) in which the objective x 7→ f(x;θ) and the constraint

function x 7→ g(x;θ) depend on the value of some parameter θ ∈ Θ.

Consider metric spaces (Rn, dX ) and (Rd, dΘ). A parametric (constrained) optimization

problem (n, d, l,Θ,X , f, g), denoted (Θ,X , f, g) when n, d, and l are clear from context,

consists of a basic feasible set X ⊆ Rn, set of parameters Θ ⊆ Rd, a parametric objective

function f : Rn × Rd → R, and an inequality constraint function g : Rn × Rd → Rl, which

for all θ ∈ Θ define the following maximization problem:

max
x∈X

f(x;θ) (2.24)

constrained by g(x;θ) ≥ 0 (2.25)

When faced with a parametric optimization problem, we are often interested in understand-

ing properties of the marginal function f∗(θ)
.
= maxx∈X :g(x)≥0 f(x;θ) and the solution

correspondence X ∗(θ)
.
= argmaxx∈X :g(x)≥0 f(x;θ). The maximum theorem, also known

as Berge’s maximum theorem (Berge, 1997), characterizes properties of the marginal func-

tion and solution correspondence. For convenience, define the constraint correspondence

C(θ) .= {x ∈ X | g(x;θ) ≥ 0}.

Theorem 2.9.6 [Maximum Theorem for Continuity].

Consider a parametric optimization problem (Θ,X , f, g). If the constraint correspondence

C is continuous and non-empty, compact-valued, and f is continuous, then the following

hold:

1. f∗ is continuous, and

2. X ∗ is upper hemicontinuous, and non-empty, and compact-valued.
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We note that the continuity cf the constraint correspondence C can be guaranteed under

either of the following assumptions by Theorem 5.9 and Example 5.10 of Rockafellar and

Wets (2009):

Assumption 2.9.3 [Continuity via quasiconvex representation].

Consider a correspondence C(θ) .= {x ∈ X | g(x;θ) ≥ 0}, and suppose that:

1. X is compact

2. g is continuous and quasiconcave

Assumption 2.9.4 [Continuity via Slater’s condition].

Consider a correspondence C(θ) .= {x ∈ X | g(x;θ) ≥ 0}, and suppose that

1. X is compact

2. g is continuous and concave

3. (Slater’s condition) For all θ ∈ Θ, there exists a feasible relative interior point

x̂ ∈ relint(C(θ)), i.e., x̂ ∈ int(X ) and for all c ∈ [l], if x 7→ gc(x,θ) is affine then

gc(x̂,θ) ≥ 0, and gc(x̂,θ) > 0 otherwise.

Going further than continuity, we might more generally be interested in understanding the

convexity and concavity properties of the marginal function and solution correspondence.

As a corollary, of Theorem 2.9.4 we have the following convexity characterization of the

image of the solution correspondence.

Corollary 2.9.1 [Convex-valued solution correspondence].

Consider a parametric optimization problem (Θ,X , f, g). If the constraint correspondence

C is non-empty-, compact-, and convex-valued, and for all θ ∈ Θ, x 7→ f(x;θ) is continuous

and quasiconcave, then X ∗ is non-empty-, and compact-, and convex-valued.

The following theorem provides sufficient conditions for the concavity of the marginal

function and convexity of the solution correspondence (see Theorem 2.1 and 3.1 of Kyparisis

and Fiacco (1987)).
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Theorem 2.9.7 [Convexity/concavity of the marginal function].

Consider a parametric optimization problem (Θ,X , f, g). If the constraint correspondence

C is convex, and f is concave, then f∗ and X ∗ are concave.
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Part I

Variational Inequalities and Walrasian
Economies
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Chapter 3

Scope and Motivation

3.1 Scope

Part I of this thesis is divided into three chapters. In Chapter 4, after reviewing background

material on variational inequalities, we1 will introduce two new type of method with

polynomial-time convergence guarantees. The first type of methods will be a family of

first-order methods which we call the mirror extragradient method. We will prove that

this method converges to a strong solution of any variational inequality for which a weak

solution exists. Further, in the absence of a weak solution, we will prove local convergence

to a strong solution when the algorithm’s first iterate is initialized close enough to a local

weak solution. As first order methods are not guaranteed to converge beyond settings

where a (local) weak solution exists, we will then turn our attention to a class of second-

order methods known as merit function methods. In particular, we will introduce the

primal mirror descent method, which we will show is guaranteed to converge to a local

minimum of the regularized primal gap function of any Lipschitz-smooth variational

inequality.

In Chapter 5, after reviewing background material on Walrasian economies, we will show

that the set of Walrasian equilibria of any Walrasian economy is equal to set of strong

solutions of an associated variational inequality. In addition, we will show that the mirror

1The works in Part I of this thesis were a collaboration with Amy Greenwald, with Sadie Zhao additionally
contributing to the verification of Chapter 6.

63



gradient method applied to this variational inequality is equivalent to solving a Walrasian

economy via a well-known price-adjustement process known as tâtonnement. Furthermore,

by running the mirror extragradient method on this variational inequality, we obtain a

new family of price adjustment processes called the mirror extratâtonnement process, for

which we show polynomial-time convergence to a Walrasian equilibrium in a large class

of Walrasian economies. Finally, using the VI characterization of Walrasian equilibrium,

we will introduce a class of merit function methods with polynomial-time convergence

guarantees for an even broader class of Walrasian economies.

While the results in Chapter 5 answer a number of open questions relevant to the variational

inequality framework in general, in Chapter 6, using the tools of convex optimization

and consumer theory, we provide a more fine-grained convergence analysis with better

guarantees for a particular tâtonnement process in a class of Walrasian economies used

widely in practice, known as Fisher markets. In particular, we will show the sublinear

convergence of entropic tâtonnement to a Walrasian equilibrium in homothetic Fisher

markets with bounded elasticity of Hicksian demand.

3.2 Motivation

Walrasian economies (or general equilibrium models), first studied by French economist

Léon Walras in 1874, are a broad mathematical framework for modeling any economic

system governed by supply and demand (Walras, 1896). A Walrasian economy consists

of a finite set of commodities, characterized by an excess demand function that maps

values for commodities, called prices, to positive (respectively, negative) quantities of each

commodity demanded (respectively, supplied) in excess. Walras proposed a steady-state

solution of his economy, namely a Walrasian (or competitive) equilibrium, represented by

a collection of per-commodity prices which is feasible, i.e., there is no excess demand for

any commodity, and for which Walras’ law holds, i.e., the value of the excess demand is

equal to 0.
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Walras did not establish conditions ensuring the existence of an equilibrium, but he did

argue, albeit without conclusive evidence, that his economy would settle at a Walrasian

equilibrium via a price-adjustment process known as tâtonnement, which mimics the

behavior of the law of supply and demand. More specifically, this process generates a

sequence of prices based on prior prices and associated excess demands, updating prices

at a rate equal to the excess demand (Walras, 1896; Uzawa, 1960; Arrow and Hurwicz,

1958). To motivate the relevance of tâtonnement to real-world economies, Walras argued that

tâtonnement is a natural price-adjustment process, in the sense that if each each commodity

is owned by a different seller, then each seller can update the price of its commodity without

coordinating with other sellers, using information only about the excess demand of its own

commodity, hence making it plausible that tâtonnement could explain the movement of

prices in real-world economies where sellers again do not coordinate with one another.

Nearly half a century after Walras’ initial foray into general equilibrium analysis, a group

of academics brought together by the Cowles Commission in 1939 reinitiated a study

of Walras’ economic model with the purpose of bringing rigorous mathematics to the

analysis of markets. One of the earliest and most important outputs of this collaborative

effort was the introduction of a broad and well-justified class of Walrasian economies

known as competitive economies (Arrow and Debreu, 1954), for which the existence of

Walrasian equilibrium was established by a novel application of fixed point theorems to

economics. With the question of existence thus resolved, the field subsequently turned its

focus to investigating questions on the stability of Walrasian equilibrium i.e., which price-

adjustment processes can settle at a Walrasian equilibrium and under what assumptions?

(Uzawa, 1960; Balasko, 1975; Arrow and Hurwicz, 1958; Cole and Fleischer, 2008; Cheung

et al., 2018; 2013; Jain et al., 2005; Codenotti et al., 2005; 2006; Chen and Teng, 2009).

Most relevant work on stability has been concerned with the convergence properties of tâ-

tonnement. Beyond Walras’ justification for tâtonnement’s relevance to real-world economies,

research on tâtonnement in the post-world war II economics literature is motivated by the
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fact that it can be understood as a plausible explanation of how prices move in real-world

markets (Gillen et al., 2020). Hence, if one could prove that tâtonnement is a universal

price-adjustment process (i.e., a price-adjustment process that converges to a Walrasian

equilibrium in all competitive economies), then perhaps it would be justifiable to claim

real-world economies would also eventually settle at a Walrasian equilibrium.

In 1958, Arrow and Hurwicz (1958) established the convergence of a continuous-time

variant of tâtonnement in Walrasian economies with an excess demand function satisfying

the weak axiom of revealed preferences (WARP) (Afriat, 1967), which among others,

includes Walrasian economies satisfying the gross substitutes (GS) condition (Arrow et al.,

1959; Arrow and Hurwicz, 1960) (i.e., if the price of one commodity increases, the excess

demand for the other commodities does not decrease). This result was complemented by

Nikaidô and Uzawa’s (Nikaidô and Uzawa, 1960) result on the convergence of a discrete-

time variant of tâtonnement in Walrasian economies satisfying WARP—albeit without

any non-asymptotic convergence guarantees. These initial results sparked hopes that

tâtonnement could be a universal price-adjustment process.

Furthermore, as there in general there does not exist a closed-form characterization of

Walrasian equilibria, these results ignited further interest in discovering algorithms to

compute a Walrasian equilibrium, as tâtonnement could be implemented on a computer to

obtain numerical approximations of Walrasian equilibria. Indeed, these early results on

the stability of tâtonnement inspired a new line of work on applied general equilibrium

(Scarf, 1967b;a; Scarf and Hansen, 1973; Scarf, 1982) initiated by Herbert Scarf2, whose goal

was to establish “a general method for the explicit numerical solution of the neoclassical

[Walrasian economy] model” (Scarf and Hansen, 1973). The motivation behind this research

agenda was a desire to predict the impact of economic policy by estimating the parameters

of a parametric Walrasian economy from empirical data, and then running a comparative

2See, for instance, Arrow and Kehoe (1994) for a detailed exposition of Herbert Scarf’s contribution to
general equilibrium theory.
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static analysis to compare the numerical solution of the Walrasian economy before and

after the implementation of the policy.

Unfortunately, soon after initiating this research agenda, Scarf dashed all hopes that tâ-

tonnement could be a universal price-adjustment process by showing that the sequence

of prices generated by a continuous-time variant of tâtonnement can cycle ad infinitum

around the Walrasian equilibrium of his eponymous competitive economy, with only three

commodities and an excess demand function generated by three consumers with Leontief

preferences, i.e., the Scarf economy (Scarf, 1960). Even more discouragingly, when applied

to the Scarf economy, the prices generated by discrete-time variants of tâtonnement spiral

away from the Walrasian equilibrium, moving further and further away from equilibrium.

Scarf’s negative result seems to have discouraged further research by economists on the

stability of Walrasian equilibrium (Fisher, 1975). Despite research on this question coming

to a near halt, one positive outcome was achieved, on the convergence of a non-tâtonnement

update rule known as Smale’s process (Herings, 1997; Kamiya, 1990; van der Laan et al.,

1987; Smale, 1976), which updates prices at the rate of the product of the excess demand and

the inverse of its Jacobian, to a Walrasian equilibrium in competitive economies that have

an excess demand with a non-singular Jacobian, including Scarf economies. Unfortunately,

this convergence result for Smale’s process comes with two caveats: 1) Smale’s process is

not a “natural" price-adjustment process, as it updates the price of each commodity using

information about not only the excess demand of the commodity but also the derivative of

the excess demand function with respect to each commodity in the economy, 2) convergence

of discrete time-variants of Smale’s process requires that the excess demand function satisfy

the law of supply and demand (i.e., a monotone excess demand correspondence), which

even Walrasian economies that satisfy the GS or WARP conditions need not satisfy.

Nearly half a century after these seminal analyses of competitive economies, research on

the stability and efficient computation of Walrasian equilibrium is once again coming to

the fore, motivated by applications of algorithms to compute Walrasian equilibrium in
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dynamic stochastic general equilibrium models in macroeconomics (Geanakoplos, 1990;

Sargent and Ljungqvist, 2000; Taylor and Woodford, 1999; Fernández-Villaverde, 2023),

and the use of algorithms such as tâtonnement to solve models of transactions on crypo-

tocurrency blockchains (Leonardos et al., 2021; Liu et al., 2022; Reijsbergen et al., 2021)

and load balancing over networks (Jain et al., 2013). In contrast to the prior literature

on the stability of tâtonnement, which was primarily concerned with proving asymptotic

convergence of price-adjustment processes to a Walrasian equilibrium, this line of work

is also concerned with obtaining non-asymptotic convergence rates, and hence computing

approximate Walrasian equilibria in polynomial time.

The first result in this direction is due to Codenotti et al. (2005), who introduce a discrete-

time version of tâtonnement, and show that in exchange economies that satisfy weak gross

substitutes (WGS) (i.e., the excess demand of any commodity weakly increases if the price

of any other commodity increases, fixing all other prices), the tâtonnement process converges

to an approximate Walrasian equilibrium in a number of steps which is polynomial in

the inverse of the approximation factor and size of the problem. Unfortunately, soon

after this positive result appeared, Papadimitriou and Yannakakis (2010) showed that

it is impossible for a price-adjustment process based on excess demand to converge in

polynomial time to a Walrasian equilibrium in general (i.e., Walrasian economies with a

Lipschitz-continuous excess demand which satisfy homogeneity of degree 0 and Walras’

law), ruling out the possibility of Smale’s process (and many others), justifying the notion

of Walrasian equilibrium in all competitive economies. Nonetheless, further study of the

convergence of price-adjustment processes such as tâtonnement under stronger assumptions,

or in simpler models than full-blown Arrow-Debreu competitive economies, continues, as

these processes are being deployed in practice (Jain et al., 2013; Leonardos et al., 2021; Liu

et al., 2022; Reijsbergen et al., 2021).3

3We refer the reader to Sections 4.2.2 to 5.3.2 for additional related work on algorithms for solving Walrasian
economies and VIs.
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3.3 Contributions

3.3.1 A Tractable Variational Inequality Framework for Walrasian Economies

To address the challenge brought forward by the impossibility result of Papadimitriou

and Yannakakis (2010), we provide a characterization of Walrasian equilibrium using the

variational inequality (VI) optimization framework. To this end, we first introduce the

class of mirror extragradient algorithms and prove the polynomial-time convergence of

this method for VIs that satisfy a computational tractability condition known as the Minty

condition (Minty, 1967), and a generalization of Lipschitz-continuity known as Bregman-

continuity. A Bregman-continuous (or relatively continuous (Lu, 2019)) function is one

for which the change in the Euclidean distance of the function between any two points is

proportional to the Bregman divergence between those two points.

With these tools in place, we then demonstrate that the set of Walrasian equilibria of

balanced economies—those Walrasian economies with an excess demand correspondence

that is homogeneous of degree 0, and satisfy weak Walras’s (i.e., the value of the excess

demand is less than or equal to 0 at all prices)—a class of Walrasian economies which

among others includes Arrow and Debreu’s competitive economies (Arrow and Debreu,

1954), is equal to the set of strong solutions of a VI that satisfies the Minty condition (Minty,

1967). With this characterization in hand, we apply the mirror extragradient algorithm to

solving this VI, which gives rise to a novel natural price-adjustment process we call mirror

extratâtonnement.

An important property of the VI we introduce is that its search space for prices is not

restricted to the unit simplex as it is traditionally the case for competitive economies,

but rather to the unit box. This fact offers us insight into understanding how we can

overcome Papadimitriou and Yannakakis’s impossibility result on the exponential-time

convergence of price-adjustment processes in general Walrasian economies. Papadimitriou

and Yannakakis’s definition of a price-adjustment process restricts prices generated by
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the process to lie within the unit simplex; indeed, when the search space of the VI we

introduce is restricted in this way, the VI fails to satisfy the Minty condition, and is thus

computationally intractable. This suggests that relaxing the requirement that prices lie

within the unit simplex can overcome the challenge of the exponential-time convergence of

price-adjustment processes in Walrasian economies, and allow for the efficient computation

of Walrasian equilibrium, at least in practice.

The reader might wonder what we mean by “in practice”. As it turns out the VI charac-

terization we provide is in general discontinuous at one point in its search space, namely

when the prices for all commodities are 0. As such, because it is not possible to ensure the

Lipschitz-continuity or Bregman-continuity of the excess demand on the unit box in general,

it is not possible to obtain polynomial-time convergence of our mirror extragradient to solve

our VI without further assumptions. Nevertheless, as we discuss in the sequel, we observe

the fast convergence of the mirror extratâtonnement process in experiments with a wide

variety of competitive economies, including very large instances with Leontief consumers,

for which the computation of a Walrasian equilibrium is known to be PPAD-complete

(Codenotti et al., 2006; Deng and Du, 2008). These results suggest the need for a novel

assumption that would explain the convergence process in practice. To this end, we intro-

duce the pathwise Bregman-continuity assumption, a condition that requires the excess

demand to be Bregman continuous along the sequence of prices generated by the mirror

extratâtonnement process, which we show is sufficient to guarantee the polynomial-time

convergence of our process.

While the pathwise Bregman-continuity assumption provides intuition on the fast con-

vergence of the mirror extratâtonnement processes in practice, it is hard to verify this

assumption in advance. As Bregman-continuity can be guaranteed when the price space is

restricted to the unit simplex in a large class of Walrasian economies called variationally

stable economies—which amongst others contain those satisfying WARP and GS—, we

subsequently restrict our search space for prices to the unit simplex, and restrict our atten-
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tion to competitive economies that are variationally stable on the unit simplex (i.e., those

economies for which the associated VI satisfies the Minty condition) and have a bounded

elasticity of excess demand (i.e., the percentage change in the excess demand for a percent-

age change in prices is bounded across all price changes). We demonstrate that under these

additional assumptions, the VI is guaranteed to satisfy the Minty condition, and show that

for such economies, the excess demand is Bregman continuous, thus providing the first

polynomial-time convergence result for a class of price-adjustment processes in this class

of Walrasian economies, which among others includes competitive economies that satisfy

WGS, and more generally, WARP.

3.3.2 Variational Inequalities

Our first major contribution is introducing the class of mirror extragradient algorithms, a

generalization of Korpelevich’s extragradient method (Korpelevich, 1976) for solving VIs.

We establish best-iterate convergence of the class of mirror extragradient algorithms to an ε-

strong solution of VIs that satisfy the Minty condition and are Bregman continuous inO(1/ε2)

evaluations of the optimality operator of the VI (Theorem 4.3.1). Our result generalizes

the results and proof techniques of Huang and Zhang (2023) for the extragradient method,

and extends the convergence results of Zhang and Dai (2023) for the unconstrained mirror

extragradient method to constrained domains. In addition, to provide further justification

for the convergence of the mirror extratâtonnement process in balanced economies, we

establish suitable conditions for the local convergence of the mirror extragradient algorithm

to an ε-strong solution of any Bregman-continuous VI that does not satisfy the Minty

condition—to the best of our knowledge, the first result of its kind (Theorem 4.3.2).

3.3.3 Walrasian Economies

While a characterization of the set of Walrasian equilibria of any Walrasian economy as the

solution set of an associated complementarity problem (i.e., a VI where the constraint set is

the positive orthant) have already been known (Dafermos, 1990), for balanced economies,
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we provide the first computationally tractable characterization of Walrasian equilibria as

the set of strong solutions of a VI that satisfies the Minty condition and whose constraint

set is given by the unit box. We then apply the mirror extragradient method to obtain a

novel natural price-adjustment process we call the mirror extratâtonnement process (Al-

gorithm 6), and prove its convergence in all balanced economies that satisfy pathwise

Bregman continuity (Corollary 5.4.1).

We then restrict our attention to a novel class of competitive economies, namely those which

are variationally stable on the unit simplex, and establish the polynomial-time convergence

of the mirror extratâtonnement process in all such economies assuming bounded elasticity

of excess demand (Theorem 5.4.2). Our polynomial-time convergence result is the first

such result for price-adjustment processes in the class of economies that satisfy WARP, and

generalizes the well-known tâtonnement convergence result in competitive economies with

bounded elasticity of excess demand that satisfy WGS (Codenotti et al., 2005).

We then apply the mirror extratâtonnement process to the Scarf economy, and prove its

polynomial-time convergence to the unique Walrasian equilibrium of this economy (Corol-

lary 5.4.4). As such, the mirror extratâtonnement process is the first discrete-time natural

price-adjustment process known to converge in the Scarf economy.

Finally, we run a series of experiments on a variety of competitive economies where we

verify that the pathwise Bregman-continuity assumption holds, and demonstrate that

our algorithm converges to a Walrasian equilibrium at the rate predicted by our theory.

Importantly, our experiments include examples of randomly initialized very large com-

petitive economies (∼ 500 consumers and ∼ 500 commodities), which are known to be

PPAD-complete (e.g., Leontief economies), for which we show that our algorithm finds a

Walrasian equilibrium fast without failure in all cases.
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3.3.4 Fisher Markets

Earlier work (Cheung, 2014; Cheung et al., 2013) has established a convergence rate of

(1−Θ(1))T for CES Fisher markets excluding the linear and Leontief cases, and of O (1/T)

for Leontief and nested4 CES Fisher markets, where T ∈ N+ is the number of iterations for

which tâtonnement is run. In linear Fisher markets, however, tâtonnement does not converge.

We generalize these results by proving a convergence rate of O((1+ϵ2)/T), where ϵ is the

maximum absolute value of the price elasticity of Hicksian demand across all buyers. Our

convergence rate covers the full spectrum of homothetic Fisher markets, including mixed

CES markets, i.e., CES markets with linear, Leontief, and (nested) CES buyers, unifying

previously existing disparate convergence and non-convergence results. In particular, for

ϵ = 0, i.e., Leontief Fisher markets, we recover the best-known convergence rate of O(1/T),

and as ϵ → ∞, i.e., linear Fisher markets, we obtain the non-convergent behaviour of

tâtonnement (Cole and Tao, 2019). We summarize known convergence results in light of our

results in Figure 3.1a.

We observe that, in contrast to general competitive economies, in homothetic Fisher mar-

kets, concavity of the utility functions is not necessary for the existence of competitive

equilibrium (Theorem 6.2.1). A computational analog of this result also holds, namely that

tâtonnement converges in homothetic Fisher markets, even when buyers’ utility functions

are non-concave. Our results parallel known results on the convergence of tâtonnement in

WGS markets, where concavity of utility functions is again not necessary for convergence

(Codenotti et al., 2005).

4See Chapter 10 of Cheung (2014).
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Space of Fisher markets

O
(
(1+ε2)/t

)
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O (1/t)
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WGS
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CES(ρ > 0)

(1−Θ(1))t
CES(ρ < 0)

(1−Θ(1))t

(a) The convergence rates of tâtonnement for differ-
ent Fisher markets. We color previous contribu-
tions in blue, and our contribution in red, i.e., we
study homothetic Fisher markets, where ϵ is the
maximum absolute value of the price elasticity of
Hicksian demand across all buyers. We note that
the convergence rate for WGS markets does not
apply to markets where the price elasticity of Mar-
shallian demand is unbounded, e.g., linear Fisher
markets; likewise, the convergence rate for nested
CES Fisher markets does not apply to linear or
Leontief Fisher markets.

Hicksian

Marshallian0 ∞−∞

−∞

∞ Linear

Leontief
Cobb-Douglas

CES(ρ > 0)CES(ρ < 0)

(b) Cross-price elasticity taxonomy of well-known
homogeneous utility functions. There are no previ-
ously studied utility functions in the space of util-
ity functions with negative Hicksian cross-price
elasticity. Future work could investigate this space
and prove faster convergence rates than those pro-
vided in this thesis. We note that our convergence
result covers the entire spectrum of this taxonomy
(excluding limits of the y-axis).

Figure 3.1: A summary of known results in Fisher markets.
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Chapter 4

Variational Inequalities

4.1 Background

Variational inequalities (Facchinei and Pang, 2003) are a mathematical modeling framework

whose study dates back to the early 1960s (Lions and Stampacchia, 1967; Hartman and

Stampacchia, 1966; Browder, 1965; Grioli, 1973; Brezis and Sibony, 2011). Their utility lies in

their very broad mathematical formulation which allows one to solve other mathematical

modeling problems using the tools of functional analysis. They have found a great number

of applications to problems in engineering and finance (Facchinei and Pang, 2003) over

the years, and have recently seen an increased interest due to their novel applications in

machine learning, to problems ranging from the training of generative adversarial neural

networks (Goodfellow et al., 2014) to robust optimization (Ben-Tal et al., 2009).

4.1.1 Stampacchia Variational Inequality

Consider an inner product space (U , ⟨·, ·⟩). A (generalized1) variational inequality (VI),

denoted (X ,F), consists of a constraint set X ⊆ U and an optimality operator F : U ⇒ U∗.

For notational convenience, for any x ∈ X , we denote any arbitrary element of F(x) by

f(x), and denote the variational inequality by (X ,f) if F is singleton-valued.

1When F is singleton-valued a generalized variational inequality is simply called a variational inequality.
As our computational results will be limited to generalized variational inequalities where F is singleton-valued,
for simplicity, we will refer to generalized variational inequalities simply as variational inequalities.
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Any VI (X ,F) defines a problem known as the (generalized) Stampacchia variational

inequality (SVI) (Lions and Stampacchia, 1967):

Find x∗ ∈ X and f(x∗) ∈ F(x∗) s.t. for all x ∈ X , ⟨f(x∗),x − x∗⟩ ≥ 0 (4.1)

A solution to a SVI is called a strong solution of the variational inequality (X ,F). Just like

in convex optimization settings (see Section 1.1.2 of Nesterov (1998)), in practice, it is not

possible to compute an exact strong solution to a VI (X ,F) in finite-time, and as such we

have to resort to approximate solutions which we call the ε-strong solution. Note that in the

following definition, in line with the literature (see, for instance Section 1.2 of Diakonikolas

(2020)), the inequality is negated (and as such inverted).

Definition 4.1.1 [Strong Solution].

Given an approximation parameter ε ≥ 0, an ε-strong (or Stampacchia) solution of the VI

(X ,F) is an x∗ ∈ X for which there exists f(x∗) ∈ F(x∗) s.t. maxx∈X ⟨f(x∗),x∗ − x⟩ ≤ ε.

A 0-strong solution is simply called a strong solution. We denote the set of ε-strong (respec-

tively, the set of strong) solutions of a VI (X ,F) by SVIε(X ,F) (respectively, SVI (X ,F)).

To understand this definition, first take a look at the following equivalent formulations:

max
x∈X
⟨f(x∗),x∗ − x⟩ ≤ ε

⇐⇒ max
x∈X
−⟨f(x∗),x − x∗⟩ ≤ ε

⇐⇒ −min
x∈X
⟨f(x∗),x − x∗⟩ ≤ ε

⇐⇒ min
x∈X
⟨f(x∗),x − x∗⟩ ≥ −ε

The final inequality tells us that any first-order deviations from x∗ can change the objective

by at most −ε (i.e., decrease the objective at most by ε). Since the LHS is negative (simply

plug in x = x∗), when ε = 0, first-order deviations away from a solution cannot decrease

the objective further.

A large number of mathematical optimization problems can be cast as VI problems, and as

such they have found a large number of applications. We will explore a number of these
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applications to game theory in this thesis, and mention now only a simple application to

convex optimization for illustrative purposes.

Example 4.1.1 [Convex Optimization as a VI].

Consider a convex optimization problem (X , h), where X ⊆ U is a non-empty, compact,

and convex constraint set, and h : U → R is a continuous and convex objective function:

i.e.,

min
x∈X

h(x)

Any ε-minimum x∗ ∈ X of (X , h) s.t. h(x∗) − minx∈X h(x) ≤ ε satisfies the following

necessary and sufficient optimality conditions (see, for instance Section 2 of Crespi et al.

(2005)):

⟨∂h(x∗),x∗ − x⟩ ≤ ε ∀x ∈ X ,∃∂h(x∗) ∈ Dh(x∗)

Taking a maximum over x ∈ X , we can then see that the set of ε-minima of (X , h) corre-

sponds to the set of ε-strong solutions SVIε(X ,Dh) of the VI (X ,Dh), where the optimality

operator is given by the subdifferential correspondence of the objective h.

Going further, if (X , h) is not a convex optimization problem, but is instead a weakly-convex

optimization problem, then the optimality conditions are only sufficient, in which case

the set of ε-strong solutions SVIε(X ,Dh) of the VI (X ,Dh) is called the set of ε-stationary

points of (X , h).

Strong solutions can be shown to exist in a broad of class of VIs known as continuous VIs.

Definition 4.1.2 [Continuous VIs].

A continuous VI is a VI (X ,F) such that:

1. X is non-empty, compact, and convex

2. F is upper hemicontinuous, non-empty-valued, compact-valued, and convex-

valued
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The proof of existence of a strong solution in continuous VIs relies on a fixed-point argument

applied to a mapping whose fixed points correspond to strong solutions of the VI, which

can be shown to exist by the Glicksberg-Kakutani fixed point theorem (see Theorem 2.4.1).

We refer the reader to Theorem 2.2.1 of Facchinei and Pang (2003) for details.

Theorem 4.1.1 [Existence of Strong Solution (Theorem 2.2.1 of Facchinei and Pang (2003))].

Every continuous VI (X ,F) has at least one strong solution, i.e., SVI (X ,F) ̸= ∅.

4.1.2 Minty Variational Inequality

An alternative but related problem formulation for VIs is the (generalized) Minty varia-

tional inequality (MVI) (Minty, 1967). Given a VI (X ,F), the MVI is defined as:

Find x∗ ∈ X s.t. for all x ∈ X there exists f(x) ∈ F(x) s.t. ⟨f(x),x∗ − x⟩ ≤ 0 (4.2)

A solution to a MVI is called the weak solution, for which we similarly can define an

approximate variant for computational purposes.

Definition 4.1.3 [Weak (or Minty) Solution].

Given a VI (X ,F) and an approximation parameter ε ≥ 0, an ε-weak (or Minty) solution

is an x∗ ∈ X for which there exists f(x) ∈ F(x) s.t. maxx∈X ⟨f(x),x∗ − x⟩ ≤ ε.

A 0-weak solution to the VI is simply called a weak solution. We denote the set of ε-

weak (respectively, the set of weak) solutions a VI (X ,F) byMVIε(X ,F) (respectively,

MVI (X ,F)).

The inequality maxx∈X ⟨f(x),x∗ − x⟩ ≤ ε says that any movement from any x to an x∗

can increase the objective by at most ε. Now since the LHS is non-negative (simply plug in

x = x∗), when ε = 0, any movement from another variable to a solution cannot increase

the objective; it can only decrease it.

In continuous VIs (see Definition 4.1.2), the set of weak solutions is a subset of set of strong

solutions, i.e., the MVI is a refinement of the SVI. However, we note that a weak solution is

in general not guaranteed to exist in continuous VIs.
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Remark 4.1.1 [Strong vs. Weak Solutions].

It might seem like be a misnomer that the solutions of the MVI are called weak solutions

as they are a subset of the strong solutions; however, beyond finite dimensional settings

(e.g., the Euclidean space setting of interest here), the set of weak and strong solutions may

be totally unrelated, as they are not guaranteed to have a non-empty intersection. As a VI

is a mathematical framework for modeling other mathematical problems using the tools

of functional analysis, a weak solution should be interpreted as "weak" from a modeling

perspective, in the following sense.

In a VI (X ,F), we are given an optimality operator F which maps an x ∈ X to a set of

optimality conditions. These optimality conditions are then tested against other x′ ∈ X

using an inner product. For strong solutions of the VI, the candidate solution we are

seeking, say x∗, is mapped by the optimality operator F ; as such, the operator must be

well defined at x∗, and more importantly, the optimality conditions f(x∗) must be satisfied

by the candidate solution x∗. In contrast, for weak solutions of the VI, the optimality

conditions f(x∗) need not be satisfied by x∗, and the optimality operator need not even be

defined (i.e., F(x∗) might be empty).

That is, a weak solution is weak as there is no notion of optimality that can be attributed

to it without testing it against other x′ ∈ X , while a strong solution is itself strong as

its optimality can almost be determined independently of other x′ ∈ X : the optimality

conditions fully characterize a solution. As such, when we cast a mathematical problem as

a VI, the set of weak solutions might be underspecified, and thus nothing is to be gained by

casting the original problem as a VI. To see this concretely, recall Example 4.1.1, and suppose

that the objective of the optimization problem is non-convex. The set of weak solutions

to the corresponding VI corresponds to the set of global solutions of the optimization

problem (see, for instance, Proposition 2.2 of Crespi et al. (2005)), while the set of strong

solutions corresponds to its stationary points. The MVI formulation of the optimization

problem is thus no more informative than the original problem. In contrast, the stationary
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points of the optimization problem, which correspond to the strong solutions of the VI

provide additional information, namely the necessary conditions that must be satisfied

by the solutions of the original optimization problem. Perhaps, more importantly, the

optimality of a local solution to the optimization problem (and as such of the associated

SVI problem) can be determined almost independently of other points: the first-order

conditions fully characterize a local solution. In contrast, the optimality of a global solution

to the optimization problem (and as such of the associated MVI) requires one to test a

candidate solution against all other points. For additional discussion, we refer the reader to

Zang and Avriel (1975).

4.1.3 Generalized Monotonicity Properties of Variational Inequalities

The following additional properties of VIs define important properties of the set of strong

and weak solutions of VIs, and will be relevant in the sequel. In particular, a large number

of VIs satisfy a number of monotonicity conditions which makes them more analytically

tractable.

Definition 4.1.4 [Monotone, Pseudomonotone and Quasimonotone VIs].

A VI (X ,F) is monotone (respectively, pseudomonotone / quasimonotone) iff the opti-

mality operator F is monotone (respectively, pseudomonotone / quasimonotone).2

Another common and more general property for the analysis of VIs, known as the Minty

condition, is simply the existence of a Minty solution.

Definition 4.1.5 [Minty’s Condition].

A VI (X ,F) satisfies the Minty condition iffMVI (X ,F) ̸= ∅.

Example 4.1.2 [Where Minty’s condition does not hold].

Consider the VI (X , f) associated with the concave minimization problem minx∈[−1,1]−x2,

with X = [−1, 1] and f(x) = −2x. Solutions to this minimization problem occur at x∗ = −1

and x∗ = 1. Now, note that for x∗ = −1 and x ∈ (0, 1], we have ⟨f(x), x − x∗⟩ < 0. Similarly,

2For a definition of monotone, pseudomonotone and quasimonotone operators, Section 2.8.
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for x∗ = 1 and x ∈ [−1, 0), we have ⟨f(x), x − x∗⟩ < 0. Since any Minty solution is a (global)

solution of the minimization problem, a Minty solution cannot exist.

With these definitions in order, we summarize the following known properties of the

solution sets of VIs.

Remark 4.1.2 [Solution Set Properties].

Let ε ≥ 0, then the following implications hold:

• (X ,F) is continuous =⇒ SVI (X ,F) ̸= ∅ (Theorem 2.2.1 of Facchinei and Pang

(2003)))

• (X ,F) is continuous =⇒ MVI (X ,F) ⊆ SVI (X ,F)

• (X ,F) is monotone =⇒ SVIε(X ,F) ⊆MVIε(X ,F)

• (X ,F) is pseudomonotone =⇒ SVI (X ,F) ⊆MVI (X ,F)

• (X ,F) is quasimonotone with X non-empty and compact =⇒ Minty condition

(Lemma 3.1 of (He, 2017))

• If SVI (X ,F) ̸= ∅, then monotone =⇒ pseudomonotone =⇒ Minty’s condition

Note that while it has become common place to use the Minty condition in the analysis of

VIs as it is very general (see, for instance, He et al. (2022)), in all the applications discussed

in this thesis, the Minty condition can be replaced by the assumption that the VI (X ,F) is

quasimonotone with X non-empty, and compact, by Lemma 3.1 and Proposition 3.1 of (He,

2017).

4.2 Algorithms for Variational Inequalities

We now turn our attention to the computation of solutions to variational inequalities. In

what follows, for simplicity, we will restrict ourselves to VIs (X ,F) in which F is singleton-

valued, which we will denote simply as (X ,f). In future work, the algorithms and results
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provided in this chapter could be extended to the more general non-singleton-valued VI

setting.

4.2.1 Computational Model

In this thesis, we will consider two classes of methods to solve VIs, first-order and second-

order methods which both belong to the class of kth-order methods.

Definition 4.2.1 [kth-order methods].

Given some k ∈ N++, a VI (X ,F) for which the derivatives {∇jf}k−1
j=1 are well defined,

and an initial iterate x(0) ∈ X , a kth-order method µ consists of an update function which

generates the sequence of iterates {x(t)}t given by: for all t = 0, 1, . . .,

x(t+1) .= µ

(
t⋃
i=0

(x(i), {∇jf(x(i))}k−1
j=0)

)

The computational complexity results in this chapter will rely on the following computa-

tional model which has been broadly adopted in the literature (see, for instance, Cai et al.

(2022)).

Definition 4.2.2 [VI Computational Model].

Given a VI (X ,f) and a kth-order method µ, the computational complexity of (X ,f) is

measured in term of the number of evaluations of the the functions f ,∇f , . . . ,∇kf .

Remark 4.2.1.

In line with the literature, the computational model we consider thus assumes that any

other operation such as a (Bregman) projection onto a set is a constant cost operation.

The computational results in the literature, as well as the results we will present in this

chapter, hold for the following class of VIs.

Definition 4.2.3 [Lipschitz-Continuous VIs].

Given a modulus of continuity λ ≥ 0, a λ-Lipschitz-continuous VI is a VI (X ,f) such that:

1. X is non-empty, compact, and convex

2. f is λ-Lipschitz continuous
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4.2.2 Related Work

Historically, the goal of the literature on solution methods for VIs has been to devise

algorithms which are asymptotically guaranteed to converge to a strong or weak solution

(Brezis and Brezis, 2011). An overwhelming majority of these works have focused on

first-order methods for computing solutions of VIs, with higher-order methods having

been considered only in recent years (see, for instance, He et al. (2022); Huang and Zhang

(2022)). While a strong solution of a VI is guaranteed to exist in continuous VIs, most results

on the computational complexity of strong solutions concern the class of monotone VIs

(see, for instance Cai et al. (2022)) with a few works focusing on VIs that satisfy the Minty

condition (see, for instance, Diakonikolas (2020)).

The canonical algorithm to solve VIs is the projected gradient method (Cauchy et al., 1847;

Nesterov, 1998) (also known under the names of the subgradient method, gradient descent

ascent, or the Arrow-Hurwicz-Uzawa method (Arrow and Hurwicz, 1958; Arrow et al.,

1958)). While asymptotic convergence of the projected gradient method can be shown for a

subset of monotone VIs known as strongly monotone VIs, in general monotone VIs, only

ergodic asymptotic convergence (i.e., asymptotic convergence of the averaged iterates) to a

solution3 can be guaranteed. The earliest known algorithm with asymptotic convergence

guarantees to a solution of a monotone VI is the extragradient method, attributed to

Korpelevich (1976). Following this early success, Popov (1980) introduced a closely related

algorithm called the optimistic gradient method, which he also showed to converge to a

solution. These initial extragradient and optimistic gradient algorithms would eventually

become much more sophisticated, with a large body of work appearing on asymptotic

convergence guarantees for variants of these earlier methods (e.g., (Solodov and Svaiter,

1999)).

More recently, the literature has turned its attention to algorithms with non-asymptotic

guarantees, and in particular to ones that are guaranteed to compute an ε-strong or ε-weak
3Recall that for monotone VIs, the set of strong and weak solutions are equal: as such, “solution” here refers

to both strong and weak solutions.
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solution of a VI in polynomial-time, i.e., in a number of evaluations of the optimality

operator F which is polynomial in the inverse of the approximation parameter 1/ε, the

dimensionality n of the constraint set, and other relevant assumption-specific parame-

ters, such as an upper bound on all of the values of the optimality operator. One of the

earliest results in this direction was given by Nemirovski (2004), who introduced the con-

ceptual Mirror-Prox method, an elegant generalization of the Extragradient Method, and

established that ε-strong and ε-weak solutions can be computed in O(1/ε) operations by

averaging the iterates of the algorithm under the assumptions that the VI is monotone and

the optimality operator is Lipschitz-continuous. Nemirovski’s work inspired a large body

of work on more sophisticated algorithms (e.g., (Auslender and Teboulle, 2005; Diakoniko-

las, 2020)) for monotone VIs, and better computational results for the projection method

(Gidel et al., 2018), the extragradient method (Gorbunov et al., 2022a; Golowich et al., 2020a;

Cai et al., 2022) and the optimistic gradient method (Gorbunov et al., 2022b).

A number of works have considered first-order methods to compute a strong solution

(e.g., Loizou et al. (2021); He et al. (2022); Diakonikolas (2020)), or a stationary point, of the

VI4 (e.g., Liu et al. (2021)) that also satisfies the Minty condition. The first-order methods

considered by this more recent line of work on non-monotone variational inequalities

include the extragradient method (e.g., (Wang and Ma, 2024; Ofem et al., 2023)), Tseng’s

method (e.g., (Censor et al., 2011; Thong et al., 2020; Uzor et al., 2023; Dung et al., 2024;

Aremu et al., 2024)), and the optimistic gradient method (e.g., (Lin and Jordan, 2022)) and

its variants.

4A (ε, δ) stationary point of a VI (X ,F) is a point x∗ ∈ X s.t. for some δ ≥ 0, there exists x ∈ Bδ(x∗) and
x is an ε-strong solution. Convergence to this weaker solution concept is necessary for VIs in which F is not
singleton-valued for technical reasons, and any future work that seeks to generalize the results in this section
should adopt this weaker definition to prove convergence results.
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4.3 First-Order Methods

We will at present focus on first-order methods for VIs.

4.3.1 Mirror Gradient Algorithm

The canonical class of first-order methods that can be used to compute strong solutions

for VIs is the class of mirror gradient algorithms (Algorithm 1, (Nemirovskij and Yudin,

1983)). These methods are parameterized by a kernel function h : X → R, which induces a

a Bregman divergence divh : X × X → R that defines the algorithm’s update function µ.

Definition 4.3.1 [Bregman Divergence].

Given a set X and a kernel function h : X → R, the Bregman divergence divh : X ×X → R

associated with h is defined as:

divh(x,y)
.
= h(x)− h(y)− ⟨∇h(y),x − y⟩

We note the following properties of the Bregman divergence. For additional background,

see, for instance Zhang and He (2018).

Remark 4.3.1 [Properties of the Bregman divergence].

When h is convex, for all x,y ∈ X , the Bregman divergence is positive, i.e., divh(x,y) ≥ 0.

Further, if h is strictly convex, then divh(x,y) = 0 iff x = y . In addition, if h is µ-strongly

convex, then for all x,y ∈ X , we have divh(x,y) ≥ µ
2∥x − y∥2.

Algorithm 1 Mirror Gradient Algorithm

Input: X ,f , h, τ, η,x(0)

Output: {x(t)}t

1: for t = 1, . . . , τ do

2: x(t+1) ← argmin
x∈X

{〈
f(x(t)),x − x(t)

〉
+ 1

2ηdivh(x,x
(t))
}

return {x(t)}t

When the kernel function is chosen s.t. h(x) .= 1
2 ∥x∥

2, the Bregman divergence corresponds

to the Euclidean square norm, i.e., divh(x,y)
.
= ∥x − y∥2, in which case the mirror gradient
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method reduces to the well-known projected gradient method (Algorithm 2, (Cauchy et al.,

1847)).

Algorithm 2 Project Gradient Algorithm

Input: X ,f , τ, η,x(0)

Output: {x(t)}t

1: Initialize x(1) ∈ X arbitrarily

2: for t = 1, . . . , τ do

3: x(t+1) ← ΠX
[
x(t) − ηf(x(t))

]
= argmin

x∈X

{〈
f(x(t)),x − x(t)

〉
+ 1

2η ∥x − x(t)∥2
}

return {x(t)}t

Unfortunately, while the average of the iterates of the mirror gradient method can be

shown to converge asymptotically to a strong solution for monotone VIs with a Lipschitz-

continuous optimality operator, it is only possible to prove polynomial-time computation

of an ε-weak solution in such VIs, which does not necessarily imply convergence to an

ε-strong solution (see, for instance, Proposition 8 and Appendix D of Liu et al. (2021)).

More importantly, in general the sequence of iterates generated by the mirror gradient

method is not guaranteed to converge, as shown by the following example.

Example 4.3.1 [Non-Convergence of Mirror Gradient Method].

Consider the VI (X ,f) with X .
= R2 and f(x, y) = (−y, x). For this VI, we have

SVI (X ,f) = MVI (X ,f) = {(0, 0)}. Suppose that (x(0),y(0)) ̸= (0, 0), then for any

η > 0, the iterates generated by the gradient method are given by:

(x(t), y(t))
.
=

(
x(0) − η

t∑
k=1

y(k−1), y(0) + η

t∑
k=1

x(k−1)

)
∀t ∈ N++ (4.3)

and as such are unbounded, i.e., ∥(x(t),y(t))∥→ ∞.

4.3.2 Mirror Extragradient Algorithm

As the iterates of the mirror gradient method do not asymptotically converge to a strong or

weak solution, and it is not possible to obtain polynomial-time computation of an ε-strong
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solution by averaging the iterates, we now introduce a novel class of first order methods,

namely the class of mirror extragradient algorithms, which similar to the class of mirror

gradient methods, are parameterized by a kernel function h : X → R that induces a

Bregman divergence divh : X × X → R defining the update function µ of the algorithm.

Algorithm 3 Mirror Extragradient Algorithm

Input: X ,f , h, τ, η,x(0)

Output: {x(t+0.5),x(t+1)}t

1: for t = 1, . . . , τ do

2: x(t+0.5) ← argmin
x∈X

{〈
f(x(t)),x − x(t)

〉
+ 1

2ηdivh(x,x
(t))
}

3: x(t+1) ← argmin
x∈X

{〈
f(x(t+0.5)),x − x(t)

〉
+ 1

2ηdivh(x,x
(t))
}

return {x(t+0.5),x(t+1)}t

The mirror extragradient algorithm (Algorithm 3) generalizes the well-known extragradient

algorithm which is known to asymptotically converge to a strong solution (Popov, 1980),

and allows for the polynomial-time computation of an ε-strong solution (Nemirovski,

2004; Golowich et al., 2020b; Cai et al., 2022). In particular, when the kernel function for

the mirror extragradient method is chosen s.t. h(x) .
= 1

2 ∥x∥
2, the Bregman divergence

corresponds to the Euclidean square norm, i.e., divh(x,y)
.
= ∥x − y∥2, in which case the

mirror extragradient method reduces to the extragradient method (Algorithm 4).

Algorithm 4 (Projected) Extragradient Algorithm

Input: X ,f , τ, η,x(0)

Output: {x(t+0.5),x(t+1)}t

1: for t = 1, . . . , τ do

2: x(t+0.5)←ΠX
[
x(t) − ηf(x(t))

]
=argmin

x∈X

{〈
f(x(t)),x − x(t)

〉
+ 1

2η ∥x − x(t)∥2
}

3: x(t+1)←ΠX
[
x(t) − ηf(x(t+0.5))

]
=argmin

x∈X

{〈
f(x(t+0.5)),x − x(t)

〉
+ 1

2η ∥x − x(t)∥2
}

return {x(t+0.5),x(t+1)}t
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A seminal result by Nemirovski (2004) shows that the average of the iterates output by the

extragradient algorithm are an ε-strong solution for any monotone VI with a Lipschitz-

continuous optimality operator when the algorithm is run for τ ∈ O(1/ε) time-steps. Ad-

ditionally, Golowich et al. (2020b); Cai et al. (2022) show that in the same setting, the tth

iterate is an ε-strong solution when the algorithm is run for τ ∈ O(1/ε2) time-steps. More

recently, Huang and Zhang (2023) have extended these polynomial-time computation result

to VIs which satisfy the weaker Minty condition rather than monotonicity assumption,

showing that there exists some k ≤ τ s.t. the kth iterate of the extragradient algorithm

is an ε-strong solution for τ ∈ O(1/ε2).5 We extend at present this result to the mirror

extragradient method. In order to prove, our result we prove several lemmas. We start

with a technical lemma on Bregman divergences.

Lemma 4.3.1 [Bregman Triangle Lemma].

Consider the Bregman divergence divh : X ×X → R associated with a differentiable kernel

function h : X → R. For all x,y, z ∈ X ,

divh(x, z) + divh(y,x)− divh(y, z) = ⟨∇h(x)−∇h(z),x− y⟩. (4.4)

Proof of Lemma 4.3.1

For all x,y, z ∈ X , we have:

divh(x, z) + divh(y,x)− divh(y, z)

= [h(x)− h(z)− ⟨∇h(z),x− z⟩] + [h(y)− h(x)− ⟨∇h(x),y − x⟩]

− [h(y)− h(z)− ⟨∇h(z),y − z⟩]

= −⟨∇h(z),x− z⟩ − ⟨∇h(x),y − x⟩+ ⟨∇h(z),y − z⟩

= ⟨∇h(z)−∇h(x),y − x⟩

With the above technical lemma in hand, we are now ready to prove a progress lemma

for the mirror extragradient method, which describes how the algorithm progresses from

one iteration to another. Note that under the Minty condition, the following lemma
5This type of convergence is known as a best-iterate convergence.
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implies convergence to a weak solution, since setting x
.
= x∗ ∈ MVI (X ,f), we obtain

divh(x
∗,x(k)) > divh(x

∗,x(k+1)), for all k ∈ N (i.e., the distance to the weak solution x∗ is

strictly decreasing). Below, we first introduce a condition necessary for the result of the

lemma to hold, and then we state the lemma.

Definition 4.3.2 [Pathwise Bregman-Continuity].

A VI (X ,f) is pathwise Bregman continuous over the outputs of the mirror extragradient

method {x(k+0.5),x(k)}t , i.e., there exists λ ≥ 0, s.t. for all k ∈ N, 1
2∥f(x

(k+0.5))−f(x(k))∥2≤

λ2 divh(x
(k+0.5),x(k)).

Lemma 4.3.2 [Mirror Extragradient Progress].

Consider the mirror extragradient algorithm (Algorithm 3) run on a VI (X ,f) with a 1-

strongly-convex kernel function h, a step size η > 0, and a time horizon τ ∈ N. If the

outputs {x(k+0.5),x(k+1)}k are such that the (X ,f) is pathwise Bregman-continuous, i.e.,

there exists λ ≥ 0, s.t. for all k ∈ N 1
2∥f(x

(k+0.5))− f(x(k))∥2≤ λ2 divh(x(k+0.5),x(k)), then

for all k ∈ N and x ∈ X , the following inequality holds for all k = 0, 1, . . .:

divh(x,x
(k))− divh(x,x

(k+1))

≥ η⟨f(x(k+0.5)),x(k+0.5) − x⟩+
(
1− (ηλ)2

)
divh(x

(k+0.5),x(k))

Proof of Lemma 4.3.2

By the first-order optimality condition at x(k+0.5), for all x ∈ X ,

⟨f(x(k)) +
1

η
∇h(x(k+0.5))−∇h(x(k)),x − x(k+0.5)⟩ ≥ 0 .

Substituting x = x(k+1) above and rearranging terms yields:

⟨f(x(k)),x(k+1) − x(k+0.5)⟩ (4.5)

≥ 1

η
⟨∇h(x(k))−∇h(x(k+0.5)),x(k+1) − x(k+0.5)⟩

=
1

η

(
divh(x

(k+0.5),x(k)) + divh(x
(k+1),x(k+0.5))− divh(x

(k+1),x(k))
)
, (4.6)

where the last line follows from Lemma 4.3.1.
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On the other hand, by the first-order optimality condition at x(k+1), for all x ∈ X ,

⟨f(x(k+0.5)),x − x(k+1)⟩+ 1

η
⟨∇h(x(k+1))−∇h(x(k)),x − x(k+1)⟩ ≥ 0 .

Hence, for all x ∈ X ,

⟨f(x(k+0.5)),x − x(k+1)⟩ ≥ 1

η
⟨∇h(x(k))−∇h(x(k+1)),x − x(k+1)⟩

=
1

η

(
divh(x

(k+1),x(k)) + divh(x,x
(k+1))− divh(x,x

(k))
)
,

where the last line once again follows from Lemma 4.3.1.

Continuing with the above inequality, for any given x ∈ X , we have:

1

η

(
divh (x

(k+1)
,x

(k)
) + divh (x,x

(k+1)
) − divh (x,x

(k)
)
)

≤ ⟨f(x
(k+0.5)

),x − x
(k+1)⟩

= ⟨f(x
(k+0.5)

),x − x
(k+0.5)⟩ + ⟨f(x

(k+0.5)
),x

(k+0.5) − x
(k+1)⟩

= ⟨f(x
(k+0.5)

),x − x
(k+0.5)⟩ + ⟨f(x

(k+0.5)
) − f(x

(k)
),x

(k+0.5) − x
(k+1)⟩ + ⟨f(x

(k)
),x

(k+0.5) − x
(k+1)⟩

≤ ⟨f(x
(k+0.5)

),x − x
(k+0.5)⟩ + ∥f(x

(k+0.5)
) − f(x

(k)
)∥·∥x(k+0.5) − x

(k+1)∥+⟨f(x
(k)

),x
(k+0.5) − x

(k+1)⟩ ,

where the final line follows by the Cauchy-Schwarz inequality (Cauchy, 1821;

Schwarz, 1884).

Recall that by the arithmetic mean-geometric mean inequality, ∀x, y ∈ R+, x+y2 ≥
√
xy. Hence, applying this inequality with x = η∥f(x(k+0.5)) − f(x(k))∥2 and y =

1/η∥x(k+0.5) − x(k+1)∥2

1

η

(
divh (x

(k+1)
,x

(k)
) + divh (x,x

(k+1)
) − divh (x,x

(k)
)
)

≤ ⟨f(x
(k+0.5)

),x − x
(k+0.5)⟩ +

η

2
∥f(x

(k+0.5)
) − f(x

(k)
)∥2+

1

2η
∥x(k+0.5) − x

(k+1)∥2+⟨f(x
(k)

),x
(k+0.5) − x

(k+1)⟩

≤ ⟨f(x
(k+0.5)

),x − x
(k+0.5)⟩ + ηλ

2
divh (x

(k+0.5)
,x

(k)
) +

1

2η
∥x(k+0.5) − x

(k+1)∥2+⟨f(x
(k)

),x
(k+0.5) − x

(k+1)⟩ ,

where the last line was obtained by the assumption that there exists λ ≥ 0, s.t.

1/2∥f(x(k+0.5))− f(x(k))∥2 ≤ λ2 divh(x(k+0.5),x(k)).

Additionally, note that by the strong convexity of h, we have for all x,y ∈ X ,

divh(x,y) ≥ 1/2∥x − y∥2. Hence,

1

η

(
divh (x

(k+1)
,x

(k)
) + divh (x,x

(k+1)
) − divh (x,x

(k)
)
)

≤ ⟨f(x
(k+0.5)

),x − x
(k+0.5)⟩ + ηλ

2
divh (x

(k+0.5)
,x

(k)
) +

1

η
divh (x

(k+1)
,x

(k+0.5)
) + ⟨f(x

(k)
),x

(k+0.5) − x
(k+1)⟩ .
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Plugging Equation (4.6) into the above yields:

1

η

(
divh(x

(k+1),x(k)) + divh(x,x
(k+1))− divh(x,x

(k))
)

≤ ⟨f(x(k+0.5)),x − x(k+0.5)⟩+ ηλ2 divh(x
(k+0.5),x(k))

+
1

η
divh(x

(k+1),x(k+0.5))− 1

η

(
divh(x

(k+0.5),x(k))

+divh(x
(k+1),x(k+0.5))− divh(x

(k+1),x(k))
)

≤ ⟨f(x(k+0.5)),x − x(k+0.5)⟩+
(
ηλ2 − 1

η

)
divh(x

(k+0.5),x(k)) +
1

η
divh(x

(k+1),x(k)) .

Canceling out terms, the above inequality simplifies as:

1

η

(
divh(x,x

(k+1))− divh(x,x
(k))
)
≤ ⟨f(x(k+0.5)),x − x(k+0.5)⟩+(

ηλ2 − 1

η

)
divh(x

(k+0.5),x(k)) . (4.7)

Finally, multiplying both sides by −η < 0, we obtain the statement of the lemma.

Lemma 4.3.2 already suggests convergence of the mirror extragradient method. To see this,

suppose that the kernel function h is strictly convex, and that the algorithm has not yet

converged, i.e., x(k+0.5) ̸= x(k). Under these assumptions, divh(x(k+0.5),x(k)) > 0, and we

can drop this term. Now, plugging in x = x∗ where x∗ ∈ MVI (X ,f), and rearranging

yields:

divh(x
∗,x(k)) > divh(x

∗,x(k+1)) ,

implying asymptotic convergence of the mirror extragradient method.

While Lemma 4.3.2 implies asymptotic convergence to a strong solution, as the main

theorem of this section of the thesis, we show polynomial-time computation of an ε-strong

solution. To do so, it is necessary to bound the progress of the intermediate iterates

divh(x
(k+0.5),x(k)) as a function of the time horizon algorithm. In the proof of our main

theorem, we show that we can bound this quantity, assuming the the VI satisfies the Minty

condition, and that in addition, the kernel function is κ-Lipschitz-smooth.
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Theorem 4.3.1 [Mirror Extragradient Method Convergence].

Let (X ,f) be a VI satisfying the Minty condition and let h be a 1-strongly-convex and

κ-Lipschitz-smooth kernel function. Consider the mirror extragradient algorithm (Algo-

rithm 3) run with the VI (X ,f), the kernel function h, a step size η > 0, and a time horizon

τ ∈ N. If there exists λ ∈ (0, 1√
2η
], s.t. 1

2

∥∥f(x(k+0.5))− f(x(k))
∥∥2 ≤ λ2 divh(x

(k+0.5),x(k)),

then the sequence of outputs {x(t+0.5),x(t+1)}t satisfies the following bound:

min
k=0,...,τ

max
x∈X
⟨f(x(k+0.5)),x(k+0.5) − x⟩ ≤ 2(1 + κ)diam(X )

η

√
divh(x∗,x(0))
√
τ

,

where x∗ ∈MVI (X ,f) is a weak solution of the VI (X ,f).

If, in addition, x
(τ)
best ∈ argmin

x(k+0.5):k=0,...,τ
divh(x

(k+0.5),x(k)), then for some choice of time

horizon τ ∈ O(κ
2diam(X )2 divh (x∗,x(0))

η2ε2 ), x
(τ)
best is an ε-strong solution of (X ,f), and

limt→∞ x(t+0.5) = limt→∞ x(t) ∈ SVI (X ,f) is a strong solution of the VI (X ,f).

Proof of Theorem 4.3.1

Taking Lemma 4.3.2 with x
.
= x∗ ∈MVI (X ,f), we have:

divh(x
∗,x(k))− divh(x

∗,x(k+1))

≥ η ⟨f(x(k+0.5)),x(k+0.5) − x∗⟩︸ ︷︷ ︸
≥0

+
(
1− (ηλ)2

)
divh(x

(k+0.5),x(k))

≥
(
1− (ηλ)2

)
divh(x

(k+0.5),x(k))

Multiplying both sides by
(
1− (ηλ)2

)−1
> 0, we have:

divh(x
(k+0.5),x(k)) ≤ 1

1− (ηλ)2

(
divh(x

∗,x(k))− divh(x
∗,x(k+1))

)
(4.8)

Summing up over k = 0, 1, . . . , τ, we have:
τ∑

k=0

divh(x
(k+0.5),x(k)) ≤ 1

1− (ηλ)2

τ∑
k=0

(
divh(x

∗,x(k))− divh(x
∗,x(k+1))

)
≤ 1

1− (ηλ)2

(
divh(x

∗,x(0))− divh(x
∗,x(τ+1))

)
≤ 1

1− (ηλ)2

(
divh(x

∗,x(0))
)
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Dividing both sides by τ, we have:

1

τ

τ∑
k=0

divh(x
(k+0.5),x(k)) ≤ 1

τ (1− (ηλ)2)

(
divh(x

∗,x(0))
)

min
k=0,...,τ

divh(x
(k+0.5),x(k)) ≤ 1

τ (1− (ηλ)2)

(
divh(x

∗,x(0))
)

(4.9)

We can transform this convergence into a convergence in terms of a ε-strong solution.

By the first-order optimality condition at x(k+0.5), for all x ∈ X ,

⟨f(x(k)) +
1

η
∇h(x(k+0.5))−∇h(x(k)),x − x(k+0.5)⟩ ≥ 0.

Re-organizing, for all x ∈ X and k ∈ N,

⟨f(x(k)),x(k+0.5) − x⟩ ≤ 1

η

∥∥∥∇h(x(k+0.5))−∇h(x(k))
∥∥∥∥∥∥x(k+0.5) − x

∥∥∥
≤ 1

η
diam(X )

∥∥∥∇h(x(k+0.5))−∇h(x(k))
∥∥∥

≤ κ

η
diam(X )

∥∥∥x(k+0.5) − x(k)
∥∥∥ ,

where the last line follow from the fact that h is κ-Lipschitz-smooth.

Now, with the above inequality in hand, for all x ∈ X and k ∈ N, we have:

⟨f(x(k+0.5)),x(k+0.5) − x⟩

= ⟨f(x(k)),x(k+0.5) − x⟩+ ⟨f(x(k+0.5))− f(x(k)),x(k+0.5) − x⟩

≤ κ

η
diam(X )∥x(k+0.5) − x(k)∥+∥f(x(k+0.5))− f(x(k))∥·∥x(k+0.5) − x∥

≤ κ

η
diam(X )∥x(k+0.5) − x(k)∥+λ

√
2 divh(x(k+0.5),x(k)) · ∥x(k+0.5) − x∥

≤ κ

η
diam(X )∥x(k+0.5) − x(k)∥+λdiam(X )

√
2 divh(x(k+0.5),x(k))

≤
(
κ

η
+ λ

)
diam(X )

√
2 divh(x(k+0.5),x(k)) ,

where the middle line was obtained by the assumption that there exists λ ≥ 0,

s.t. 1/2∥f(x(k+0.5)) − f(x(k))∥2≤ λ2 divh(x
(k+0.5),x(k)), and the last line, from the

strong convexity of h, which implies that divh(x,y) ≥ 1/2∥x − y∥2, or equivalently,√
2 divh(x,y) ≥ ∥x − y∥2, for all x,y ∈ X .
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Now, let k∗ ∈ argmink=0,...,τ divh(x
(k+0.5),x(k)). We then have, for all x ∈ X ,

⟨f(x(k∗+0.5)),x(k∗+0.5) − x⟩ ≤ diam(X )
(
κ

η
+ λ

)√
2 divh(x(k∗+0.5),x(k∗))

= diam(X )
(
κ

η
+ λ

)√
2 min
k=0,...,τ

divh(x(k+0.5),x(k))

Next, plugging Equation (4.9) into the above, we have, for all x ∈ X ,

⟨f(x(k∗+0.5)),x(k∗+0.5) − x⟩ ≤
√
2diam(X ) (κ/η + λ)√

1− (ηλ)2

√
divh(x∗,x(0))
√
τ

Now, by the assumptions η ≤ 1√
2λ
≤ 1

λ , we have:

⟨f(x(k∗+0.5)),x(k∗+0.5) − x⟩ ≤
√
2diam(X ) (κ/η + 1/η)√

1− (ηλ)2

√
divh(x∗,x(0))
√
τ

=
(1 + κ)

√
2diam(X )

η
√

1− (ηλ)2

√
divh(x∗,x(0))
√
τ

≤ (1 + κ)
√
2diam(X )

η
√

1− (1/
√
2)2

√
divh(x∗,x(0))
√
τ

≤ 2(1 + κ)diam(X )
η

√
divh(x∗,x(0))
√
τ

That is, we have:

min
k=0,...,τ

max
x∈X
⟨f(x(k+0.5)),x(k+0.5) − x⟩ ≤ max

x∈X
⟨f(x(k∗+0.5)),x(k∗+0.5) − x⟩

≤ 2(1 + κ)diam(X )
η

√
divh(x∗,x(0))
√
τ

In addition, for any ε ≥ 0, letting 2(1+κ)diam(X )
η

√
divh (x∗,x(0))√

τ ≤ ε, and solving for τ,

we have:

2(1 + κ)diam(X )
η

√
divh(x∗,x(0))
√
τ

≤ ε

4(1 + κ)2diam(X )2

η2
divh(x

∗,x(0))

ε2
≤ τ

That is, x(τ)
best ∈ argminx(k+0.5):k=0,...,τ divh(x

(k+0.5),x(k)) is an ε-strong solution after

at most 4(1+κ)2diam(X )2

η2

divh (x∗,x(0))
ε2 iterations of the mirror extragradient algorithm.

Finally, notice that

lim
k→∞

max
x∈X
⟨f(x(k+0.5)),x(k+0.5) − x⟩ = lim

τ→∞
min

k=0,...,τ
max
x∈X
⟨f(x(k+0.5)),x(k+0.5) − x⟩ = 0
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and

lim
k→∞

divh(x
(k+0.5),x(k)) = lim

τ→∞
min

k=0,...,τ
divh(x

(k+0.5),x(k)) = 0

Hence, limt→∞ x(t+0.5) = limt→∞ x(t) = x∗∗ is a strong solution of the VI (X ,f).

With the main theorem of this section proven, some remarks are in order.

Remark 4.3.2.

First, note that the assumption that h is 1-strongly-convex is without loss of generality since

any µ-strongly-convex kernel h′ can be converted to a 1-strongly-convex kernel 1/µh′.

Second, while for ease of exposition we assume that the VI is λ-Lipschitz-continuous, this

assumption can more generally be weakened to 1) the VI is continuous and 2) for all t ∈ N,

there exists λ ≥ 0 s.t. divh(f(x(t+0.5)), f(x(t))) ≤ λdivh(x
(t+0.5),x(t)). The second part of

this assumption can be interpreted as Lipschitz-continuity w.r.t. the Bregman divergence

divh over the trajectories of the mirror extragradient algorithm. As we will show in

Chapter 6, this weaker assumption can be useful when the optimality operator does not

satisfy Lipschitz-continuity.

4.3.3 Local Convergence of Mirror Extragradient

Unfortunately, beyond VIs for which the Minty condition holds, it seems implausible to

devise a first-order method that converges to a strong solution. To see this, observe the

following example.

Example 4.3.2 [Non-convergence in the absence of the Minty condition].

Consider the VI (X , f) where X .
= R and f(x)

.
= 1− x2. A Minty solution fails to exist in

this example (see, Example 4.1.2). In contrast, the set of strong solutions of (X , f) is given

by SVI (X , f) = {−1, 1}. Notice that for any any x > 1, f(x) < 0. As such, for the mirror

(extra)gradient method, for any choice of step size η > 0, if the initial iterate is initialized

s.t. x(0) > 1, then x(k) →∞.
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This is perhaps not surprising, since the computation of an ε-strong solution for Lipschitz-

continuous VIs is in general a PPAD-complete problem (Kapron and Samieefar, 2024).

Nevertheless, in the above example one can see that for x(0) < 1, the mirror (extra)gradient

algorithm converges to the strong solution x∗ = −1. This then begs the question: under

what conditions can one guarantee the local convergence of the mirror extragradient algorithm to a

strong solution? As we will show, we can guarantee local convergence by assuming a local

variant of Minty’s condition. To define this condition, we rely on the notions of local weak

and local strong solutions, recently introduced by Aussel and Chaipunya (2024).

Definition 4.3.3 [Local Weak and Strong Solution].

Consider a VI (X ,F) be a VI. Let δ ≥ 0 be a locality parameter.

A δ-local strong solution of the VI is an x∗ ∈ X that satisfies:

∃f(x∗) ∈ F(x∗), max
x∈X∩Bδ(x∗)

⟨f(x∗),x − x∗⟩ ≥ 0 (4.10)

A δ-local weak solution of the VI is an x∗ ∈ X that satisfies:

∃f(x) ∈ F(x), max
x∈X∩Bδ(x∗)

⟨f(x),x − x∗⟩ ≤ 0 (4.11)

We denote the set of δ-local strong (respectively, weak) solutions of a VI (X ,F) by

LSVIδ(X ,F) (respectively, LMVIδ(X ,F)).

We note that for any VI (X ,F) with X convex, local strong solutions are not of great interest

since they coincide with (global) strong solutions (see section 3.2. of Aussel and Chaipunya

(2024). This observation suggests that the computation of a δ-local strong solution is also

PPAD-complete in Lipschitz-continuous VIs.

Nevertheless, as we will show next, local weak solutions can be of great interest to show

local convergence to a strong solution. To understand how the above condition can imply

convergence, recall by Lemma 4.3.2 the iterates of the mirror extragradient algorithm satisfy

the following for all t ∈ N:

divh(x,x
(k))− divh(x,x

(k+1)) ≥ η⟨f(x(k+0.5)),x(k+0.5) − x⟩+
(
1− (ηλ)2

)
divh(x

(k+0.5),x(k))
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Suppose that the kernel function h is strictly convex, and that the algorithm has not yet

converged, i.e., x(k+0.5) ̸= x(k). Under these assumptions, divh(x(k+0.5),x(k)) > 0, and we

can drop this term. Re-organizing the expression, we then have:

divh(x,x
(k)) > divh(x,x

(k+1)) + η⟨f(x(k+0.5)),x(k+0.5) − x⟩

Now, notice that if we can ensure that for all k ∈ N+, there exists an x∗ ∈ SVI (X ,f)

s.t. ⟨f(x(k+0.5)),x(k+0.5) − x∗⟩ ≥ 0, then divh(x
∗,x(k)) ≥ divh(x

∗,x(k+1)), implying that

x(k) → x∗, i.e., x(k) converges to a strong solution. If we were guaranteed the existence of a

weak solution (i.e., the Minty condition), then we would plug in this weak solution for x,

which would guarantee that the second inner product term on the RHS would be equal

to 0, in which case divh(x,x
(k)) > divh(x,x

(k+1)), and convergence to a weak solution

(and thus assuming continuity of f , also to a strong solution) would be guaranteed. As a

weak solution might not exist, we will instead plug in a local weak solution for x, and then

choose our learning rate such that the mirror extragradient method remains close enough

to this local weak solution throughout the run of the algorithm. Since any local weak

solution is guaranteed to be a strong solution by Proposition 3.1 of Aussel and Chaipunya

(2024), a weaker sufficient condition which ensures the existence of a strong solution

x∗ ∈ SVI (X ,f) s.t. ⟨f(x(k+0.5)),x(k+0.5) − x∗⟩ ≥ 0 is to initialize the algorithm with an

initial iterate x(0) ∈ X that is O(δ)-close to a δ-local weak solution x∗ ∈ LMVIδ(X ,f), for

some δ ≥ 0, and in addition, to once again ensure that all subsequent intermediate iterates

{x(k+0.5)}k∈N++
remain δ-close to x∗.

To ensure this property holds, we have to first bound the distance between the intermediate

{x(k+0.5)}k∈N+
and terminal {x(k)}k∈N+

iterates. The following lemma provides us with

such a bound.

Lemma 4.3.3 [Distance bound on intermediate iterates].

Let (X ,f) be a λ-Lipschitz-continuous VI satisfying the Minty condition, and h a 1-strongly-

convex and κ-Lipschitz-smooth kernel function. Consider the mirror extragradient algo-

rithm (Algorithm 3) run on the VI (X ,f) with the kernel function h, any step size η ≥ 0,
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and for any time horizon τ ∈ N. The outputs {x(k+0.5),x(k+1)}k satisfy for all k ∈ [τ],

∥∥∥x(k+0.5) − x(k)
∥∥∥ ≤ ηℓ , (4.12)

where ℓ .
= maxx∈X ∥f(x)∥.

Proof of Lemma 4.3.3

Note that for all k ∈ N+, by the first-order optimality condition at x(k+0.5), we have

for all x ∈ X :

⟨f(x(k)) +
1

η
∇h(x(k+0.5))−∇h(x(k)),x − x(k+0.5)⟩ ≥ 0 .

Substituting x = x(k) above, we have:

⟨f(x(k)),x(k) − x(k+0.5)⟩ ≥ 1

η
⟨∇h(x(k))−∇h(x(k+0.5)),x(k) − x(k+0.5)⟩

=
1

η

(
divh(x

(k+0.5),x(k)) + divh(x
(k),x(k+0.5))

)
, (4.13)

where the last line follows from Lemma 4.3.1.

Re-organizing:

divh(x
(k+0.5),x(k)) ≤ η⟨f(x(k)),x(k) − x(k+0.5)⟩ − divh(x

(k),x(k+0.5)) (4.14)

≤ η⟨f(x(k)),x(k) − x(k+0.5)⟩ − 1

2

∥∥∥x(k) − x(k+0.5)
∥∥∥2 (4.15)

≤ η
∥∥∥f(x(k))

∥∥∥∥∥∥x(k) − x(k+0.5)
∥∥∥− 1

2

∥∥∥x(k) − x(k+0.5)
∥∥∥2 (4.16)

≤ ηℓ
∥∥∥x(k) − x(k+0.5)

∥∥∥− 1

2

∥∥∥x(k) − x(k+0.5)
∥∥∥2 (4.17)

Since for all z ∈ R and a, b ∈ R+, it holds that az − bz2 ≤ a2/4b, choosing a = ηℓ and

b = 1/2 yields:

divh(x
(k+0.5),x(k)) ≤ (ηℓ)2

2
(4.18)

Additionally, by the strong convexity of h, divh(x,y) ≥ 1/2∥x − y∥2, or equivalently,√
2 divh(x,y) ≥ ∥x − y∥2, for all x,y ∈ X . Hence,∥∥∥x(k+0.5) − x(k)

∥∥∥ ≤√2 divh(x(k+0.5),x(k)) ≤ ηℓ (4.19)
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With the above Lemma in hand, we now show that if the initial iterate starts close enough

to some local weak solution, then the intermediate iterates remain within this δ-ball for the

duration of the run of the algorithm, for an appropriate choice of step size.

Lemma 4.3.4 [Mirror Extragradient Iterates Remain Local].

Let (X ,f) be a λ-Lipschitz-continuous VI satisfying the Minty condition and let h a 1-

strongly-convex kernel function. Define ℓ .
= maxx∈X ∥f(x)∥. Suppose that for some

x∗ ∈ LMVIδ(X ,f) δ-local weak solution, the initial iterate x(0) ∈ X is chosen so that√
2 divh(x∗,x(0)) ≤ δ − ηℓ. Consider the mirror extragradient algorithm (Algorithm 3) run

on the VI (X ,f) with the kernel function h, a step size η ≥ 0, initial iterate x(0), and some

time horizon τ ∈ N. The outputs {x(t+0.5),x(t+1)}t satisfy for all t ∈ [τ],

divh(x
∗,x(t)) ≤ 1/2(δ − ηℓ)2 and

∥∥∥x(t+0.5) − x∗
∥∥∥ ≤ δ .

Proof of Lemma 4.3.4

We prove the claim by induction on t ∈ N+.

Base case: t = 0∥∥∥x(0.5) − x∗
∥∥∥ =

∥∥∥x(0.5) − x(0) + x(0) − x∗
∥∥∥

≤
∥∥∥x(0.5) − x(0)

∥∥∥+ ∥∥∥x(0) − x∗
∥∥∥

≤
∥∥∥x(0.5) − x(0)

∥∥∥+√2 divh(x∗,x(0))

≤ ηℓ + (δ − ηℓ) (Lemma 4.3.3)

≤ δ

Inductive step: Suppose that for all t = 0, . . . , τ,
∥∥x(t+0.5) − x∗∥∥ ≤ δ and√

2 divh(x∗,x(t)) ≤ δ − ηℓ (or equivalently, divh(x∗,x(t)) ≤ 1/2(δ − ηℓ)2). We will

show that
∥∥x(τ+1.5) − x∗∥∥ ≤ δ and divh(x

∗,x(τ+1)) ≤ 1/2(δ − ηℓ)2.

By Lemma 4.3.2, we have:

divh(x,x
(τ))− divh(x,x

(τ+1)) (4.20)

≥ η⟨f(x(τ+0.5)),x(τ+0.5) − x⟩+
(
1− (ηλ)2

)
divh(x

(τ+0.5),x(τ)) (4.21)
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Substituting in x
.
= x∗ ∈ LMVIδ(X ,f), we have:

divh(x
∗,x(τ))− divh(x

∗,x(τ+1))

≥ η ⟨f(x(τ+0.5)),x(τ+0.5) − x∗⟩︸ ︷︷ ︸
≥0

+
(
1− (ηλ)2

)
divh(x

(τ+0.5),x(τ))︸ ︷︷ ︸
≥0

≥ 0

Re-organizing, and using the induction hypothesis that divh(x∗,x(τ)) ≤ 1/2(δ − ηℓ)2

yields:

1/2(δ − ηℓ)2 ≥ divh(x
∗,x(τ)) ≥ divh(x

∗,x(τ+1)) (4.22)

Therefore,∥∥∥x(τ+0.5) − x∗
∥∥∥ =

∥∥∥x(τ+0.5) − x(τ) + x(τ) − x∗
∥∥∥

≤
∥∥∥x(τ+0.5) − x(τ)

∥∥∥+ ∥∥∥x(τ) − x∗
∥∥∥

≤
∥∥∥x(τ+0.5) − x(τ)

∥∥∥+√2 divh(x∗,x(τ))

≤ ηℓ + (δ − ηℓ) (Lemma 4.3.3)

≤ δ

With the above lemma in hand, we can modify the proof of Theorem 4.3.1 slightly to show

local convergence to a strong solution when the initial iterate of the algorithm is initialized

close enough to a local solution.

Theorem 4.3.2 [Mirror Extragradient Method Local Convergence].

Let (X ,f) be a λ-Lipschitz-continuous VI, h a 1-strongly-convex and κ-Lipschitz-smooth

kernel function, and let η ∈
(
0, 1√

2λ

]
. Suppose that for some x∗ ∈ LMVIδ(X ,f) δ-local

weak solution, the initial iterate x(0) ∈ X is chosen so that
√

2 divh(x∗,x(0)) ≤ δ − ηℓ.

Consider the mirror extragradient algorithm (Algorithm 3) run on the VI (X ,f) with the

kernel function h, the step size η, initial iterate x(0), and an arbitrary time horizon τ ∈ N.
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The outputs {x(k+0.5),x(k+1)}k satisfy for all k ∈ [τ],

min
k=0,...,τ

max
x∈X
⟨f(x(k+0.5)),x(k+0.5) − x⟩ ≤

√
2(1 + κ)diam(X )

η

δ
√
τ

In addition, if x(τ)
best ∈ argminx(k+0.5):k=0,...,τ∥x(k+0.5)−x(k)∥, then for some τ ∈ O(1/ε2), x(τ)

best

is an ε-strong solution of (X ,f).

Proof of Theorem 4.3.2

Taking Lemma 4.3.2 with x
.
= x∗, where x∗ is as given in the Theorem statement, by

Lemma 4.3.4, for all k ∈ N,

divh(x
∗,x(k))− divh(x

∗,x(k+1))

≥ η ⟨f(x(k+0.5)),x(k+0.5) − x∗⟩︸ ︷︷ ︸
≥0

+
(
1− (ηλ)2

)
divh(x

(k+0.5),x(k))

≥
(
1− (ηλ)2

)
divh(x

(k+0.5),x(k))

Multiplying both sides by
(
1− (ηλ)2

)−1
> 0, we have:

divh(x
(k+0.5),x(k)) ≤ 1

1− (ηλ)2

(
divh(x

∗,x(k))− divh(x
∗,x(k+1))

)
(4.23)

Summing up over k = 0, 1, . . . , τ, we have:
τ∑

k=0

divh(x
(k+0.5),x(k)) ≤ 1

1− (ηλ)2

τ∑
k=0

(
divh(x

∗,x(k))− divh(x
∗,x(k+1))

)
(4.24)

≤ 1

1− (ηλ)2

(
divh(x

∗,x(0))− divh(x
∗,x(τ+1))

)
(4.25)

≤ 1

1− (ηλ)2

(
divh(x

∗,x(0))
)

(4.26)

Dividing both sides by τ, we have:

1

τ

τ∑
k=0

divh(x
(k+0.5),x(k)) ≤ 1

τ (1− (ηλ)2)

(
divh(x

∗,x(0))
)

(4.27)

min
k=0,...,τ

divh(x
(k+0.5),x(k)) ≤ 1

τ (1− (ηλ)2)

(
divh(x

∗,x(0))
)

(4.28)

We can transform this convergence into a convergence in terms of a ε-strong solution.

Now, recall by the first order optimality conditions of x(k+0.5), we have for all x ∈ X :

⟨f(x(k)) +
1

η
⟨∇h(x(k+0.5))−∇h(x(k)),x − x(k+0.5)⟩ ≥ 0.

101



Re-organizing, for all x ∈ X , and k ∈ N we have:

⟨f(x(k)),x(k+0.5) − x⟩ ≤ 1

η

∥∥∥∇h(x(k+0.5))−∇h(x(k))
∥∥∥∥∥∥x(k+0.5) − x

∥∥∥ (4.29)

≤ diam(X )
η

∥∥∥∇h(x(k+0.5))−∇h(x(k))
∥∥∥ (4.30)

≤ diam(X )κ
η

∥∥∥x(k+0.5) − x(k)
∥∥∥ (4.31)

where the last line follow from h being κ-Lipschitz-smooth.

Now, with the above inequality in hand, notice that for all x ∈ X and k ∈ N, we

have:

⟨f(x(k+0.5)),x(k+0.5) − x⟩

= ⟨f(x(k)),x(k+0.5) − x⟩+ ⟨f(x(k+0.5))− f(x(k)),x(k+0.5) − x⟩

≤ diam(X )κ
η

∥x(k+0.5) − x(k)∥+∥f(x(k+0.5))− f(x(k))∥·∥x(k+0.5) − x∥

≤ diam(X )κ
η

∥x(k+0.5) − x(k)∥+λ∥x(k+0.5) − x(k)∥·∥x(k+0.5) − x∥

≤ diam(X )
(
κ

η
+ λ

)
∥x(k+0.5) − x(k)∥

where the penultimate line follows from the λ-Lipschitz-continuity of f , and the

strong convexity of h, which means that we have ∀x,y ∈ X , divh(x,y) ≥ 1/2∥x −

y∥2..

Now, let k∗ ∈ argmink=0,...,τ∥x(k+0.5) − x(k)∥, we then have:

⟨f(x(k∗+0.5)),x(k∗+0.5) − x⟩ ≤ diam(X )
(
κ

η
+ λ

)
∥x(k∗+0.5) − x(k∗)∥

= diam(X )
(
κ

η
+ λ

)
min

k=0,...,τ
∥x(k∗+0.5) − x(k∗)∥

≤ diam(X )
(
κ

η
+ λ

)
min

k=0,...,τ

√
2 divh(x(k+0.5),x(k))

where the last line follows from
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Now, plugging Equation (4.28) in the above, we have:

⟨f(x(k∗+0.5)),x(k∗+0.5) − x⟩ ≤ diam(X )
(
κ

η
+ λ

)
min

k=0,...,τ

√
2 divh(x(k+0.5),x(k))

≤
√
2diam(X )

(
κ

η
+ λ

)√
min

k=0,...,τ
divh(x(k+0.5),x(k))

≤

√
2diam(X )

(
κ
η + λ

)
√

1− (ηλ)2

√
divh(x∗,x(0))
√
τ

Now, by the assumption that η ≤ 1√
2λ
≤ 1

λ , we have:

⟨f(x(k∗+0.5)),x(k∗+0.5) − x⟩ ≤

√
2diam(X )

(
κ
η + 1

η

)
√

1− (ηλ)2

√
divh(x∗,x(0))
√
τ

=
(1 + κ)

√
2diam(X )

η
√

1− (ηλ)2

√
divh(x∗,x(0))
√
τ

=
(1 + κ)

√
2diam(X )

η
√

1− (1/
√
2)2

√
divh(x∗,x(0))
√
τ

=
2(1 + κ)diam(X )

η

√
divh(x∗,x(0))
√
τ

=

√
2(1 + κ)diam(X )

η

δ
√
τ

where the last line follows from the assumption that
√

2 divh(x∗,x(0)) ≤ δ − ηℓ

which implies
√

divh(x∗,x(0)) ≤ δ√
2
.

That is, we have:

max
x∈X
⟨f(x(k+0.5)),x(k+0.5) − x⟩ ≤ ⟨f(x(k∗+0.5)),x(k∗+0.5) − x⟩ ≤

√
2(1 + κ)diam(X )

η

δ
√
τ

In addition, for any ε ≥ 0, letting
√
2(1+κ)diam(X )

η
δ√
τ ≤ ε, and solving for τ, we have:

√
2(1 + κ)diam(X )

η

δ
√
τ
≤ ε

2(1 + κ)2diam(X )2

η2
δ2

ε2
≤ τ

That is, x(τ)
best ∈ argminx(k+0.5):k=0,...,τ∥x(k+0.5) − x(k)∥ is an ε-strong solution after at

most 2(1+κ)2diam(X )2

η2
δ
ε2 iterations of the mirror extragradient algorithm.
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4.4 Merit Function Methods

4.4.1 Merit Function Minimization via Second-Order Methods

Unfortunately, beyond domains where a local Minty solution might not exist, it is not

possible to show even local convergence of the extragradient method for VIs. To see this

clearly, consider the following example:

Example 4.4.1 [Non-convergence in the absence of local Minty solution].

Consider the VI (X ,f) where X .
= R × R and f(x, y)

.
= (x − y, x − y). The set of strong

solutions of this VI is given by SVI (X ,f) = {(x, y) ∈ X | x = y}. Notice that for any

x(0) > y(0), for any choice of step sizes, the iterates generated by the mirror (extra)gradient

method tend to (positive) infinity, while for x(0) < y(0), the iterates tend to negative infinity.

To overcome this non-convergence issue, given a VI (X ,f), we will instead consider second-

order methods. To derive a second-order method method, we will optimize a merit function

associated with the VI.

Definition 4.4.1 [Merit functions].

Given a VI (X ,f). A function Ξ : X → R is said to be a merit function for the set of strong

(respectively, weak) solutions of (X ,f) iff

1. for all x ∈ X , Ξ(x) ≥ 0

2. argminx∈X Ξ(x) = SVI (X ,f) (respectively, argminx∈X Ξ(x) =MVI (X ,f))

The canonical merit function associated with the strong solution of any VI is the primal

gap function Ξ : X → R+:

Ξ(x)
.
= max

y∈X
⟨f(x),x − y⟩ (4.32)

Analogously, we can also define a merit function χ : X → R+, known as the dual gap

function, which is associated with weak solutions:

χ(x)
.
= max

y∈X
⟨f(y),x − y⟩ (4.33)
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An important property of the primal (respectively, dual) gap function is that its set of

minima coincide with the set of strong (respectively, weak) solutions, i.e., SVI (X ,f) =

argminx∈X Ξ(x) (respectively,MVI (X ,f) = argminx∈X χ(x)) (see, for instance, Propo-

sition 2.3 and 2.4 of Huang and Zhang (2023)). In other words, the primal (respectively,

dual) gap function is a merit function for the strong (respectively, weak) solutions of the VI.

While the primal gap function is in general non-convex and non-differentiable, the dual

gap function is always convex. Its evaluation, however, requires solving a non-convex

optimization problem. As such, finding even stationary points of the primal and dual gap

functions is in general intractable.

Nevertheless, it is possible to formulate a differentiable merit function for strong solutions

called the α-regularized primal function Ξα : X → R+:

Ξα(x)
.
= max

y∈X
⟨f(x),x − y⟩ − α

2
∥y − x∥2 , (4.34)

where α > 0 is a regularization parameter.

We note the following important lemma due to Fukushima (1992), which we prove here for

completeness.

Lemma 4.4.1 [Properties of the regularized primal gap].

Consider a continuous VI (X ,f). If α > 0, then maxy∈X ⟨f(x),x − y⟩ − α/2 ∥y − x∥2 has a

unique solution. In addition, the following hold:

1. y∗(x) = argmaxy∈X ⟨f(x),x − y⟩ − α
2 ∥y − x∥2 .

= ΠX
[
x − 1

αf(x)
]

2. ∇Ξα(x) = f(x)− (∇f(x) + αI) (y∗(x)− x)

3. Ξα(x) = maxy∈X
α
2

(∥∥ 1
αf(x)

∥∥2 − ∥∥y − (x − 1
αf(x)

)∥∥2)
4. For all x ∈ X , Ξα(x) ≥ 0 and SVI (X ,f) = argminx∈X Ξα(x)
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Proof of Lemma 4.4.1

For the first part, by the first-order optimality condition, for all x ∈ X ,

−f(x)− α (y∗ − x) ∈ {z′ ∈ X |
〈
z′, z − y∗〉 ≥ 0,∀z ∈ X}

Re-organizing, we have for all x ∈ X :

y∗ ∈ x − 1

α
f(x) + {z′ |

〈
z′, z − y∗〉 ≥ 0 | ∀z′, z ∈ X}

∈ {x − 1

α
f(x) + z′ |

〈
z′, z − y∗〉 ≥ 0 | ∀z′, z ∈ X}

∈ {y∗ ∈ X |
〈
y∗ − (x − 1

α
f(x)), z − y∗

〉
≥ 0 | ∀z ∈ X}

∈ {y∗ ∈ X |
〈
(x − 1

α
f(x))− y∗, z − y∗

〉
≤ 0 | ∀z ∈ X}

∈ argmin
y∈X

∥∥∥∥x − 1

α
f(x)− y

∥∥∥∥2
For the second part of the lemma, applying Danskin’s Theorem (Danskin, 1966), we

have:

∇Ξα(x)
.
= f(x) + ⟨∇f(x),x − y∗(x)⟩ − α (y∗(x)− x)

= f(x)− ⟨∇f(x),y∗(x)− x⟩ − α (y∗(x)− x)

= f(x)− (∇f(x) + αI) (y∗(x)− x)
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For the third part of the lemma, we have:
Ξα(x)

= max
y∈X

⟨f(x),x − y⟩ − α

2
∥y − x∥2

= ⟨f(x),x − y∗(x)⟩ − α

2
∥x − y∗(x)∥2

= ⟨f(x),x − y∗(x)⟩ − α

2
⟨x − y∗(x),x − y∗(x)⟩

=
〈
f(x)− α

2
(x − y∗(x)),x − y∗(x)

〉
=
α

2

〈
2

α
f(x)− (x − y∗(x)),x − y∗(x)

〉
=
α

2

[〈
1

α
f(x),x − y∗(x)

〉
+

〈
1

α
f(x)− (x − y∗(x)),x − y∗(x)

〉]
=
α

2

[〈
1

α
f(x),x − y∗(x)

〉
−
〈(

x − 1

α
f(x)

)
− y∗(x),x − y∗(x)

〉]
=
α

2

[〈
1

α
f(x),x − y∗(x)

〉
−
〈(

x − 1

α
f(x)

)
− y∗(x),x − 1

α
f(x) +

1

α
f(x)− y∗(x)

〉]
=
α

2

[〈
1

α
f(x),x − y∗(x)

〉
−
∥∥∥∥(x − 1

α
f(x)

)
− y∗(x)

∥∥∥∥2 −〈(x − 1

α
f(x)

)
− y∗(x),

1

α
f(x)

〉]

=
α

2

[〈
1

α
f(x),

1

α
f(x)

〉
−
∥∥∥∥(x − 1

α
f(x)

)
− y∗(x)

∥∥∥∥2
]

=
α

2

[∥∥∥∥ 1αf(x)

∥∥∥∥2 − ∥∥∥∥(x − 1

α
f(x)

)
− y∗(x)

∥∥∥∥2
]

= max
y∈X

α

2

[∥∥∥∥ 1αf(x)

∥∥∥∥2 − ∥∥∥∥y −
(
x − 1

α
f(x)

)∥∥∥∥2
]

=
α

2

[∥∥∥∥ 1αf(x)

∥∥∥∥2 − ∥∥∥∥y∗(x)−
(
x − 1

α
f(x)

)∥∥∥∥2
]

For the final part, first note that we have by the third part of the lemma, for all

x ∈ X ,

Ξα(x) = max
y∈X

α

2

[∥∥∥∥ 1αf(x)
∥∥∥∥2 − ∥∥∥∥y − (x − 1

α
f(x))

∥∥∥∥2
]

≥ α

2

[∥∥∥∥ 1αf(x)
∥∥∥∥2 − ∥∥∥∥x − (x − 1

α
f(x)

)∥∥∥∥2
]
= 0 ,

where the final equality follows from the fact that ∥1/αf(x)∥2 =

∥(x − 1/αf(x))− x∥2.

Hence, we can have Ξα(x) = 0 iff y∗(x) = x, which, by the definition of y∗(x),

implies Ξ(x) = maxy∈X ⟨f(x),x − y⟩ = 0. That is, SVI (X ,f) = argminx∈X Ξα(x),

proving the final part of the lemma.
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The first and second part of this lemma show that the gradient of the regularized primal

gap function Ξα can be evaluated with a constant number of evaluations of the optimality

operator f of the VI and its gradient ∇f . Hence, we can minimize the regularized primal

gap function, at least locally, using a gradient descent method. Importantly, as this gradient

depends on ∇f , the ensuing algorithm, which we call the mirror potential algorithm is a

second-order method (Algorithm 5).

Algorithm 5 Mirror Potential Algorithm

Input: Ξα, h, τ, η,x(0)

Output: {x(t)}t∈[τ]

1: for t = 1, . . . , τ do

2: x(t+1) ← argmin
x∈X

{〈
∇Ξα(x

(t)),x − x(t)
〉
+ 1

2ηdivh(x,x
(t))
}

return {x(t)}t∈[τ]

Next, to prove an asymptotic convergence bound for the mirror potential method, we

require that the regularized primal gap function Ξα is at a minimum a weakly-concave

function. It turns out that when the optimality operator f is Lipschitz-continuous and

Lipschitz-smooth, the regularized primal gap function is weakly-concave. To prove this,

we first prove the following technical lemma, which is a slight variant of Lemma 4.2 of

Drusvyatskiy and Paquette (2019) for function composition that yields weakly-convex

functions.

Lemma 4.4.2 [Composition of weakly-concave and Lipschitz-smooth functions].

Given an ℓ-Lipschitz-continuous and ρ-weakly-concave function h : X → R, and a λ-

Lipschitz-continuous and β-Lipschitz-smooth function c : X → X . Their composition

x 7→ h(c(x)) is βℓ + ρλ2-weakly-concave.

Proof of Lemma 4.4.2

Let φ(x) .= h(c(x)).
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First, note the following:

∥∇h(c(x))[c(y)− c(x))]−∇h(c(x))[∇c(x)(y − x)]∥2

= ∥∇h(c(x))[c(y)− c(x))−∇c(x)(y − x)]∥2

≤ ∥∇h(c(x))∥2∥c(y)− c(x)−∇c(x)(y − x)∥2

≤ ℓ2∥c(y)− c(x)−∇c(x)(y − x)∥2

≤ βℓ2

2
∥y − x∥2 ,

where the penultimate line follows from the Lipschitz-continuity of h, and the final

line, by the β-Lipschitz-smoothness of c, which ensures that ∥c(y)−c(x)−∇c(x)(y−

x)∥≤ β/2∥y − x∥2.

Combining the above with the ρ-weak-concavity of h, which ensures that h(z) ≤

h(z′) + ⟨∇h(z′), z − z′⟩+ ρ/2 ∥z − z′∥, yields:

φ(y) = h(c(y)) ≤ h(c(x)) + ⟨∇h(c(x)), c(y)− c(x)⟩+ ρ

2
∥c(y)− c(x)∥2

≤ φ(x) + ⟨∇h(c(x)), c(y)− c(x)⟩+ ρλ2

2
∥y − x∥2

≤ φ(x) + ⟨∇h(c(x)),∇c(x)(y − x)⟩2 + βℓ

2
∥y − x∥2 + ρλ2

2
∥y − x∥2

= φ(x) + ⟨∇c(x)∇h(c(x)),y − x⟩2 + βℓ

2
∥y − x∥2 + ρλ2

2
∥y − x∥2

= φ(x) + ⟨∇φ(x),y − x⟩2 + βℓ + ρλ2

2
∥y − x∥2

With the above lemma in hand, we can now define a class of VIs for which the regularized

primal gap function is weakly-concave. To this end, we define the class of Lipschitz-smooth

of VIs.

Definition 4.4.2 [Lipschitz-Smooth VIs].

Given a modulus of smoothness β ≥ 0, a VI (X ,f) is β-Lipschitz-smooth iff f is β-

Lipschitz-smooth.
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Next, using Lemma 4.4.2 and the above definition, we prove that the regularized primal

gap function is weakly-concave in Lipschitz-continuous and Lipschitz-smooth VIs.

Lemma 4.4.3 [Weak-concavity of regularized primal gap].

Consider a λ-Lipschitz-continuous and β-Lipschitz-smooth VI (X ,f). Then, for all α ≥ 0,

the regularized primal gap function Ξα associated with (X ,f) is (2βαdiam(X )2 + 1 + 2λ)-

weakly-concave.

Proof of Lemma 4.4.3

Let h(z, z′;y)
.
= α

2

[
∥z∥2 − ∥y − z′∥2

]
. Notice that for all y ∈ X , h(z, z′;y) +

α
2 ∥z∥

2 = −∥y − z′∥2, and hence (z, z′) 7→ h(z, z′;y) + α
2 ∥z∥

2 is concave. That is,

for all y ∈ X , h(z, z′;y) is α-weakly-concave. In addition, h is αdiam(X )-Lipschitz-

continuous, since ∥∇z,z′h(z, z′;y)∥= α∥(z,y − z′)∥≤ 2αdiam(X )

Let c(x) .
= ( 1αf(x),x −

1
αf(x)). Now, notice that c is 1+2λ

α -Lipschitz-continuous

since ∥∥∥∥ 1αf(x)− 1

α
f(y)

∥∥∥∥ ≤ 1

α
∥f(x)− f(y)∥ ≤ λ

α
∥x − y∥

and ∥∥∥∥x − 1

α
f(x)− y − 1

α
f(y)

∥∥∥∥ (4.35)

=

∥∥∥∥x − y +
1

α
(f(y)− f(x))

∥∥∥∥ (4.36)

≤ ∥x − y∥+ 1

α
∥f(y)− f(x)∥ (4.37)

≤ ∥x − y∥+ λ

α
∥y − x∥ (4.38)

≤ 1 + λ

α
∥x − y∥ (4.39)

In other words, c is 1+2λ
α -Lipschitz-continuous since ∥c(x)− c(y)∥ ≤∥∥ 1

αf(x)−
1
αf(y)

∥∥+ ∥∥x − 1
αf(x)− y − 1

αf(y)
∥∥ ≤ 1+2λ

α ∥x − y∥.

Additionally, notice that x 7→ 1
αf(x) is β

α -Lipschitz-smooth, since∥∥ 1
α∇f(x)− 1

α∇f(y)
∥∥ ≤ 1

α ∥∇f(x)−∇f(y)∥ ≤ β
α ∥x − y∥. Similarly,

x 7→ x − 1
αf(x) is β

α -Lipschitz-smooth, since since
∥∥1− 1

α∇f(x)− 1 + 1
α∇f(y)

∥∥ ≤
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1
α ∥∇f(x)−∇f(y)∥ ≤ β

α∥x − y∥. As a result, c is 2β
α -Lipschitz-smooth since

∥∇c(x)−∇c(y)∥ ≤
∥∥ 1
α∇f(x)− 1

α∇f(y)
∥∥ +

∥∥1− 1
α∇f(x)− 1 + 1

α∇f(y)
∥∥ ≤

2β
α ∥x − y∥.

Hence, by Lemma 4.4.2, x 7→ h(c(x)) is 2β
α α

2diam(X )2 + 1+2λ
α α = (2βαdiam(X )2 +

1 + 2λ)-weakly-concave, since it is the composition of h, which is α-weakly-concave

and αdiam(X )-Lipschitz-continuous, and c which is 1+2λ
α -Lipschitz-continuous and

2β
α -Lipschitz-smooth.

4.4.2 Mirror Potential Algorithm for VIs

With Lemma 4.4.3 in hand, we can now analyze the convergence properties of the mirror

potential algorithm. Since Ξα is in general non-convex, it is PPAD complete to compute a

minimum of Ξα in Lipschitz-continuous and Lipschitz-smooth VIs, because otherwise we

would have computed a strong solution of such a VI, which is a PPAD-complete problem

(Kapron and Samieefar, 2024). We will thus aim to compute a stationary point of Ξα

(Definition 4.4.3) instead.

Definition 4.4.3 [Stationary point].

Given an optimization problem minx∈X h(x) where X ⊆ U is the constraint set and h : U →

R is a subdifferentiable objective, for any approximation parameter ε ≥ 0, an ε-stationary

point x∗ ∈ X is defined as the set of ε-strong solutions SVI (X ,Dh) of the VI (X ,Dh).

A 0-stationary point is simply called a stationary point.

We now state our main theorem of this section, which shows that for Lipschitz-continuous

and Lipschitz-smooth VIs, the regularized primal gap function is weakly-concave, and as

such we can compute a stationary point using standard proof techniques.

Theorem 4.4.1 [Mirror potential method convergence].

Let (X ,f) be a λ-Lipschitz-continuous and β-Lipschitz-smooth VI, h a 1-strongly-convex

kernel function, α ≥ 0, η ∈
(
0, 1

2(2βαdiam(X )2+1+2λ)

]
, and x(0) ∈ X .
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Consider the mirror potential algorithm (Algorithm 5) run with the regularized primal gap

Ξα associated with (X ,f), the kernel function h, an arbitrary time horizon τ ∈ N, the step

size η, and the initial iterate x(0). The following convergence bound to a stationary point of

Ξα then holds on the outputs {x(t)}t :

min
k=0,1,...,τ−1

max
x∈X
⟨∇Ξα(x

(k)),x(k) − x⟩ ≤ 2Ξα(x
(0))

τ

In addition, if x(τ)
best ∈ argminx(k):k=0,...,τ−1maxx∈X ⟨∇Ξα(x

(k)),x(k) − x⟩, then for some

τ ∈ O(1/ε), x(τ)
best is an ε-stationary point of Ξα.

Proof

For convenience, define ν .
= (2βαdiam(X )2 + 1 + 2λ). By Lemma 4.4.3, Ξα is ν-

weakly-concave.

Now, for all k ∈ N+, by the first-order optimality condition at x(k+1), for all x ∈ X

and k ∈ N:

⟨∇Ξα(x
(k)) +

1

η
∇h(x(k+1))−∇h(x(k)),x − x(k+1)⟩ ≥ 0.

Substituting x = x(k) above, for all k ∈ N,

⟨∇Ξα(x
(k)),x(k) − x(k+1)⟩ ≥ 1

η
⟨∇h(x(k+1))−∇h(x(k)),x(k+1) − x(k)⟩

=
1

η

(
divh(x

(k+1),x(k)) + divh(x
(k),x(k+1))

)
,

where the last line follows from Lemma 4.3.1.

Re-organizing yields for all k ∈ N,

divh(x
(k+1),x(k)) ≤ η⟨∇Ξα(x

(k)),x(k) − x(k+1)⟩ − divh(x
(k),x(k+1))︸ ︷︷ ︸
≥0

(4.40)

≤ −η⟨∇Ξα(x
(k)),x(k+1) − x(k)⟩ (4.41)

Now, by the ν-weak-concavity of Ξα, and the 1-strong-convexity of the kernel func-

tion h, which implies divh(x,y) ≥ 1/2∥x − y∥2, for all x,y ∈ X , it follows that for
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all k ∈ N,

Ξα(x
(k+1))

≤ Ξα(x
(k)) + ⟨∇Ξα(x

(k)),x(k+1) − x(k)⟩+ ν

2

∥∥∥x(k+1) − x(k)
∥∥∥2

≤ Ξα(x
(k)) + ⟨∇Ξα(x

(k)),x(k+1) − x(k)⟩+ νdivh(x
(k+1),x(k))

≤ Ξα(x
(k)) + (1− νη) ⟨∇Ξα(x

(k)),x(k+1) − x(k)⟩ (Equation (4.41))

≤ Ξα(x
(k)) + (1− νη)max

x∈X
⟨∇Ξα(x

(k)),x − x(k)⟩

Unrolling the inequality for k = 0, 1, . . . , τ − 1, yields:

Ξα(x
(τ)) ≤ Ξα(x

(0)) + (1− νη)
τ−1∑
k=0

max
x∈X
⟨∇Ξα(x

(k)),x − x(k)⟩

Re-organizing the inequality, and dropping the expression Ξα(x
(τ)) ≥ 0, we have:

(1− νη)
τ−1∑
k=0

max
x∈X
⟨∇Ξα(x

(k)),x(k) − x⟩ ≤ Ξα(x
(0))

Since η ∈ (0, 1/2ν], we have (1− νη) = (1− 1/2) ≥ 1/2. Hence,
τ−1∑
k=0

max
x∈X
⟨∇Ξα(x

(k)),x(k) − x⟩ ≤ 2Ξα(x
(0))

Multiplying both sides by 1
τ , and and applying the generalized means inequality

yields:

1

τ

τ−1∑
k=0

max
x∈X
⟨∇Ξα(x

(k)),x(k) − x⟩ ≤ 2Ξα(x
(0))

min
k=0,1,...,τ−1

max
x∈X
⟨∇Ξα(x

(k)),x(k) − x⟩ ≤ 2Ξα(x
(0))

τ

Finally, we can convert this convergence bound to a finite-time convergence result for

any ε ≥ 0, by setting mink=0,1,...,τ−1maxx∈X ⟨∇Ξα(x
(k)),x(k) − x⟩ ≤ 2Ξα(x(0))/τ ≤ ε

and solving for τ, which implies

2Ξα(x
(0))

ε
≤ τ

Hence, for some τ ∈ O(1/ε), it holds that mink=0,1,...,τ−1maxx∈X ⟨∇Ξα(x
(k)),x(k) −

x⟩ ≤ ε.
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We conclude with a remark on an interpretation of this theorem, before turning to applica-

tions of our results.

Remark 4.4.1 [When are stationary points global solutions].

It is well-known that for monotone VIs, stationary points of the regularized primal gap

function correspond to strong solutions of the VI (see, for instance, Theorem 3.3. of

Fukushima (1992)). As such, the above result implies a strong solution can be computed in

polynomial-time via the mirror potential method in monotone, Lipschitz-continuous, and

Lipschitz-smooth VIs.
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Chapter 5

Walrasian Economies

5.1 Background

A Walrasian economy (m,Z) consists of m ∈ N commodities,1 with any quantity of each

commodity being exchangeable for a quantity of another. The exchange process is governed

by a valuation system called prices, modeled as a vector p ∈ Rm+ s.t. pj ≥ 0 is the price

of commodity j ∈ [m].2 Prices p ∈ Rm+ allow the sale of x ∈ R+ units of any commodity

j ∈ [m] in exchange for the purchase of x (pj/pk) units of any other commodity k ∈ [m].

For any price system, the economy determines3 quantities of each commodity that can be

bought and sold, with all admissible exchanges being summarized by an excess demand

correspondence Z : Rm+ ⇒ Rm, which for any prices p ∈ Rm+ outputs a set of excess

demands Z(p) ⊆ Rm with each excess demand z(p) ∈ Z(p). For any price p ∈ Rm+ and

excess demand z(p) ∈ Z(p), zj(p) ≥ 0 denotes the number of units of commodity j ∈ [m]

demanded in excess (i.e., more units of j are bought than sold), while zj(p) < 0 denotes

1The “commodity” terminology is used here in the tradition of Arrow and Debreu (1954), and refers to any
raw, intermediate, or finished products, as well as labor and services.

2The astute reader might notice that in real-world economies the prices of certain commodities can be
negative (e.g., prices of oil when storage of excess oil is not possible), and might raise the concern that the model
does not account for the possibility of negative prices. However, in these cases the price of the commodity is
“negative” only colloquially speaking; rather, the price of an associated commodity is positive. For instance,
when the price of oil is negative, companies are no longer selling oil; instead, they are buying a service:
the storage of oil. As such, we account for “negative pricing” in the real-world by including as additional
commodities, commodities with “negative prices” (e.g., including both oil and the sale of oil as commodities).
We will see in Chapter 13, Part III, an example of a Walrasian economy in which commodities are explicitly
modeled, and which captures this negative pricing phenomenon.

3Here, for narrative simplicity, the economy determining prices can be interpreted as a fictional auctioneer
announcing prices in the tradition of Walras (Walras, 1896).
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the number of units of commodity j ∈ [m] supplied in excess (i.e., more units of it are

sold than bought). If Z is singleton-valued, then we will for convenience represent Z as a

function and denote it z.

A price vector p ∈ Rm+ is feasible if there exists a z(p) ∈ Z(p) s.t. for all commodities

j ∈ [m], zj(p) ≤ 0. Similarly, a price vector p ∈ Rm+ satisfies Walras’ law if there exists a

z(p) ∈ Z(p) s.t. p · z(p) = 0.

The canonical solution concept for Walrasian equilibria is the Walrasian equilibrium (Wal-

ras, 1896). In the sequel, we will introduce algorithms with polynomial-time convergence

guarantees to a Walrasian equilibrium. To analyze their convergence will use a com-

putationally relevant generalization of Walrasian equilibrium, namely the approximate

Walrasian equilibrium, to account for the bounded accuracy of computational methods.

Definition 5.1.1 [Approximate Walrasian Equilibrium].

Given an approximation parameter ε ≥ 0, a price vector p∗ ∈ [0, 1]m is said to be an

ε-Walrasian (or ε-competitive) equilibrium of a Walrasian economy (m,Z) if there exists

an excess demand z(p∗) ∈ Z(p∗) s.t.

(ε−Feasility) For all commodities j ∈ [m], zj(p∗) ≤ ε

(ε-Walras’ law) −ε ≤ p∗ · z(p∗) ≤ ε

We denote the set of ε-Walrasian equilibria of any Walrasian economy (m,Z) byWEε(m,Z).

A 0-Walrasian equilibrium is simply called a Walrasian equilibrium, in which case we

denote the set of Walrasian equilibriaWE (m,Z).

Seen otherwise, a Walrasian equilibrium p∗ ∈ Rm+ is a price vector s.t. for all commodities

j ∈ [m], p∗j > 0 =⇒ zj(p
∗) = 0 and p∗j = 0 =⇒ zj(p

∗) ≤ 0. Intuitively, a Walrasian

equilibrium is a price vector which ensures that the exchange of any commodity with

another can be implemented. On the one hand, if the price of a commodity j ∈ [m] is strictly

positive, then the exchange system dictates that j can be exchanged for a strictly positive

quantity of some other commodity k ∈ [m]; in other words, at a Walrasian equilibrium
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commodity j will always find a buyer since its excess demand is zero. On the other hand,

if the price of commodity j is zero, then the price system dictates that the commodity j

cannot be exchanged for any other commodity; in other words, at a Walrasian equilibrium

the commodity might not find a buyer.

5.2 Walrasian Economies and Variational Inequalities

With definitions in order, we now present the fundamental relationship between Wal-

rasian economies and VIs. We will use this relationship to first establish the existence of a

Walrasian equilibrium in continuous balanced economies, and then introduce efficient al-

gorithms for the computation of a Walrasian equilibrium in Lipschitz-continuous balanced

economies.

5.2.1 Walrasian Economies and Complementarity Problems

The following theorem, due to Dafermos (1990), is to the best of our knowledge the first

result exposing the connection between VIs and Walrasian equilibria (see, Nagurney (2009)

for additional references). It states that the problem of computing a Walrasian equilibrium

is equivalent to the problem of computing a strong solution of a VI whose set of constraints

is given by the positive orthant (a class of VIs known as complementarity problems (Cottle

and Dantzig, 1968)).

Theorem 5.2.1 [Walrasian economies as Complementarity Problems].

The set of Walrasian equilibria of any Walrasian economy (m,Z) is equal to the set of strong

solutions of the VI (Rm+ ,−Z), i.e.,WE (m,Z) = SVI (Rm+ ,−Z).
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Proof of Theorem 5.2.1

( =⇒ ) Let p∗ ∈ WE (m,Z) be a Walrasian equilibrium. Then, for some z(p∗) ∈ Z(p∗),

we have:

⟨z(p∗),p − p∗⟩ ∀p ∈ Rm+

= ⟨z(p∗),p⟩ − ⟨z(p∗),p∗⟩︸ ︷︷ ︸
=0

∀p ∈ Rm+

= ⟨z(p∗),p⟩︸ ︷︷ ︸
≤0

∀p ∈ Rm+

≤ 0

where the last line follows from the feasibility of z(p∗), i.e., z(p∗) ≤ 0, and the

positivity of p.

(⇐= ) Let p∗ ∈ SVI (Rm+ ,−Z). Then, for some z(p∗) ∈ Z(p), we have:

0 ≥ ⟨z(p∗),p − p∗⟩ ∀p ∈ Rm+

Substituting p
.
= p∗ + jj , we have:

0 ≥ ⟨z(p∗),p∗ + jj − p∗⟩

= ⟨z(p∗), jj⟩

≥ zj(p∗) ∀j ∈ [m]

That is, p∗ is feasible.

Similarly, substituting in p
.
= 0 and p

.
= 2p∗, we have:

0 ≤ ⟨z(p∗),p∗⟩

and

0 ≥ ⟨z(p∗),p∗⟩

That is, p∗ satisfies weak Walras’ law. Hence, p∗ is a Walrasian equilibrium.
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5.2.2 Balanced Economies and Variational Inequalities

While Theorem 5.2.1 shows that we can approach any Walrasian equilibrium computation

problem as a strong VI computation problem, because the domain of prices is unbounded

(i.e., Rm+ ), to obtain existence and convergence results, we have to restrict the class of

Walrasian economies we study. To this end, we introduce two important classes of Walrasian

economies. The first of these classes is balanced economies.

Definition 5.2.1 [Balanced economies].

A balanced economy is a Walrasian economy (m,Z) whose excess demand correspondence

satisfies:

(Homogeneity of degree 0) For all λ > 0, Z(λp) = Z(p)

(Weak Walras’ law) For all p ∈ Rm+ and z(p) ∈ Z(p), p · z(p) ≤ 0

Intuitively, homogeneity requires that prices have a meaning only relative to other prices,

and have no absolute meaning of their own (i.e., if all prices are scaled by the same amount,

the excess demand is unchanged); weak Walras’ law requires budget-balance (i.e., at

all prices, the total value of what is being demanded cannot exceed the total value of

what is being supplied). While homogeneity of degree 0 is a standard assumption, weak

Walras’ law is significantly weaker than standard assumptions previously considered in the

literature (see, for instance Arrow and Hurwicz (1958) and Debreu (1974)), and is satisfied

by Arrow-Debreu economies (Arrow and Debreu, 1954) (see, Chapter 10 for additional

details).

We now provide a novel characterization of Walrasian equilibrium prices in balanced

economies as a VI over [0, 1]m rather than Rm+ , which will allow us to obtain polynomial-

time algorithms for the computation of Walrasian equilibrium, as the computational guar-

antees of our algorithms for VIs depend on the diameter of the constraint space of the

VIs. In particular, we will now show that the set of Walrasian equilibria of any balanced

economy can be restated as the set of strong solutions of a modified VI ([0, 1]m,−Z) where
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the constraint space is [0, 1]m: i.e.,

Find p∗ ∈ [0, 1]m and z(p∗) ∈ Z(p∗) s.t. for all p ∈ [0, 1]m, ⟨z(p∗),p − p∗⟩ ≤ 0 (5.1)

Theorem 5.2.2 [Balanced economies as VIs].

For any balanced economy (m,Z), the set of Walrasian equilibria is equal to the strictly

positive cone generated by the strong solutions of the continuous VI ([0, 1]m,−Z), i.e.,

WE (m,Z) =
⋃
λ≥1 λSVI ([0, 1]m,−Z).

Proof of Theorem 5.2.2

( =⇒ ) Let p∗ ∈ WE (m,Z) be a Walrasian equilibrium. Let α .
= 1

max{1,∥p∗∥∞} so that

αp∗ ∈ [0, 1]m. Now, for some z(αp∗) ∈ Z(αp∗), we have:

⟨−z(αp∗), αp∗ − p⟩ ∀p ∈ [0, 1]m

= ⟨z(p∗),p − αp∗⟩ ∀p ∈ [0, 1]m (Homogeneity of z)

= ⟨z(p∗),p⟩ − α ⟨z(p∗),p∗⟩︸ ︷︷ ︸
=0

∀p ∈ [0, 1]m

= ⟨z(p∗),p⟩ ∀p ∈ [0, 1]m

≤ 0

where the penultimate line follows from Walras’ law holding at a Walrasian equilib-

rium, and the last line follows from the feasibility of z(p∗), i.e., z(p∗) ≤ 0 and the

positivity of p. Hence, αp∗ is a strong solution of the VI ([0, 1]m,−Z), which means

that p∗ ∈ 1/αSVI ([0, 1]m,−Z).

Now, notice that by the homogeneity of the excess demand in balanced economies,

since for all λ > 0, Z(λp∗) = Z(p∗), if p∗ is a Walrasian equilibrium, then so is

λp∗. Hence, α takes values in (0, 1], implying 1/α ∈ [1,∞). As such, we must have

WE (m,Z) ⊆
⋃
λ≥1 λSVI ([0, 1]m,−Z).
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( ⇐= ) Let p∗ ∈ SVI ([0, 1]m,−Z) and λ ≥ 1. Then, for some z(p∗) ∈ Z(p∗), we

have:

0 ≥ ⟨−z(p∗),p∗ − p⟩ ∀p ∈ [0, 1]m

= ⟨z(p∗),p − p∗⟩ ∀p ∈ [0, 1]m

= ⟨z(p∗),p⟩ − ⟨z(p∗),p∗⟩ ∀p ∈ [0, 1]m (5.2)

Plugging p = 0m into Equation (5.2), we then have:

0 ≥ ⟨z(p∗),0m⟩︸ ︷︷ ︸
=0

−⟨z(p∗),p∗⟩

0 ≥ −⟨z(p∗),p∗⟩

0 ≤ ⟨z(p∗),p∗⟩

0 ≤ ⟨z(λp∗),p∗⟩ (Homogeneity of z)

0 ≤ ⟨z(λp∗), λp∗⟩

Further, since (m,Z) is balanced, we have λp∗ · z(λp∗) = p∗ · z(p∗) ≤ 0, hence,

combining it with the above inequality, we must have λp∗ ·z(λp∗) = 0, meaning that

λp∗ satisfies Walras’ law.

In addition, continuing from Equation (5.2) again, we have:

0 ≥ ⟨z(p∗),p⟩ − ⟨z(p∗),p∗⟩︸ ︷︷ ︸
≤0

≥ ⟨z(p∗),p⟩ ∀p ∈ [0, 1]m

≥ ⟨z(λp∗),p⟩ ∀p ∈ [0, 1]m (5.3)

where the penultimate line follows from the fact that balanced economies satisfy

weak Walras’ law, and the last line from the homogeneity of degree 0 of the excess

demand.

Now, plugging p = jj into Equation (5.3), we have:

0 ≥ ⟨z(λp∗), jj⟩ ∀j ∈ [m]

≥ zj(λp∗) ∀j ∈ [m]
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That is, λp∗ is feasible. Putting it all together, λp∗ must be a Walrasian equilibrium.

As such,
⋃
λ≥1 λSVI ([0, 1]m,−Z) ⊆ WE (m,Z).

In the sequel, we will make use of the following lemma, which states that for any balanced

economy (m,Z), any approximate strong solution of the VI ([0, 1]m,−Z) is an approximate

Walrasian equilibrium of (m,Z).

Lemma 5.2.1 [ε-strong solution and ε-Walrasian equilibrium].

For any balanced economy (m,Z), any ε-strong solution of the VI ([0, 1]m,−Z) is an ε-

Walrasian equilibrium of (m,Z).

Proof of Lemma 5.2.1

(ε-strong solution =⇒ ε-Walrasian equilibrium) For any ε ≥ 0, let p∗ ∈

SVIε([0, 1]m,−Z). Then, for some z(p∗) ∈ Z(p∗), we have:

ε ≥ ⟨−z(p∗),p∗ − p⟩ ∀p ∈ [0, 1]m

= ⟨z(p∗),p − p∗⟩ ∀p ∈ [0, 1]m

= ⟨z(p∗),p⟩ − ⟨z(p∗),p∗⟩ ∀p ∈ [0, 1]m (5.4)

Plugging p = 0m into Equation (5.2), we then have:

ε ≥ ⟨z(p∗),0m⟩︸ ︷︷ ︸
=0

−⟨z(p∗),p∗⟩

ε ≥ −⟨z(p∗),p∗⟩

−ε ≤ ⟨z(p∗),p∗⟩ (5.5)

Further, since (m,Z) is balanced, it follows that p∗ · z(p∗) ≤ 0 ≤ ε. Combining this

conclusion with Equation (5.5), we see that p∗ satisfies ε-Walras’ law.

In addition, continuing from Equation (5.4) again, we have:

ε ≥ ⟨z(p∗),p⟩ − ⟨z(p∗),p∗⟩︸ ︷︷ ︸
≤0

≥ ⟨z(p∗),p⟩ ∀p ∈ [0, 1]m (5.6)

122



where the last line follows from the fact that balanced economies satisfy weak Walras’

law.

Now, plugging p = jj into Equation (5.6), we have:

ε ≥ ⟨z(p∗), jj⟩ ∀j ∈ [m]

≥ zj(p∗) ∀j ∈ [m] .

That is, p∗ is ε-feasible. Putting it all together, p∗ must be an ε-Walrasian equilibrium.

5.2.3 Competitive Economies and Continuous Variational Inequalities

We now turn our attention to proving the existence of Walrasian equilibrium. In balanced

economies, under the assumption that the excess demand correspondence Z is upper

hemicontinuous, non-empty-, compact-, and convex-valued, the existence of a Walrasian

equilibrium p∗ ∈ [0, 1]m follows as a corollary of the existence of strong solutions to

continuous VIs (Theorem 4.1.1). Unfortunately, this Walrasian equilibrium can be trivial,

i.e., p∗ = 0m is an equilibrium. To prove the existence of a non-trivial Walrasian equilibrium,

we have to restrict our attention to a subset of balanced Walrasian economies. We choose to

study a canonical subset (Debreu, 1974; Sonnenschein, 1972), which we call competitive

economies.

Definition 5.2.2 [Competitive economy].

A competitive economy is a Walrasian economy (m,Z) whose excess demand correspon-

dence satisfies:

(Homogeneity of degree 0) For all λ > 0, Z(λp) = Z(p)

(Weak Walras’ law) For all p ∈ Rm+ and z(p) ∈ Z(p), p · z(p) ≤ 0

(Non-Satiation) For all p ∈ Rm+ and z(p) ∈ Z(p), z(p) ≤ 0m implies p ·z(p) = 0

That is, a competitive economy is a balanced economy with the additional requirement

that when the excess demand is feasible, Walras’ law holds. Intuitively, this non-satiation
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condition requires that whenever all commodities are supplied in excess, it must be that the

economy has exhausted its purchasing power. As such, the excess demand is non-satiated,

in the sense that the economy cannot demand more of any commodity, not because it is not

supplied in sufficient quantity, but rather because it cannot afford it.

In competitive economies, an alternative VI characterization of Walrasian equilibrium

holds over the constraint space ∆m rather than [0, 1]m, which is more suitable for proving

existence.

Theorem 5.2.3 [Competitive economies as VIs].

For any competitive economy (m,Z), the set of Walrasian equilibria is equal to the strictly

positive cone generated by the strong solutions of the continuous VI (∆m,−Z), i.e.,

WE (m,Z) =
⋃
λ≥1 λSVI (∆m,−Z).

Proof of Theorem 5.2.3

( =⇒ ) Let p∗ ∈ WE (m,Z) be a Walrasian equilibrium. Let α .
= 1

∥p∗∥1
. Then, we have

αp∗ ∈ ∆m. Further, for some z(αp∗) ∈ Z(αp∗), we have:

⟨−z(αp∗), αp∗ − p⟩ ∀p ∈ ∆m

= ⟨z(p∗),p − αp∗⟩ ∀p ∈ ∆m (Homogeneity of z)

= ⟨z(p∗),p⟩ − α ⟨z(p∗),p∗⟩︸ ︷︷ ︸
=0

∀p ∈ ∆m

= ⟨z(p∗),p⟩ ∀p ∈ ∆m

≤ 0

where the penultimate line follows from Walras’ law holding at a Walrasian equi-

librium, and the last line follows from the feasibility of z(p∗), i.e., z(p∗) ≤ 0, and

the positivity of p. Hence, αp∗ is a strong solution of the VI (∆m,−Z), which means

that p∗ ∈ 1
α SVI (∆m,−Z).

Now, notice that by homogeneity of the excess demand in competitive economies

since for all λ > 0, Z(λp∗) = Z(p∗), if p∗ is a Walrasian equilibrium, then so is λp∗.
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Hence, α takes values in (0, 1], implying 1
α ∈ [1,∞), and as such we must have

WE (m,Z) ⊆
⋃
λ≥1 λSVI (∆m,−Z).

(⇐= ) Let p∗ ∈ SVI (∆m,−Z) and λ ≥ 1. Then, for some z(p∗) ∈ Z(p∗), we have:

0 ≥ ⟨−z(p∗),p∗ − p⟩ ∀p ∈ ∆m

= ⟨z(p∗),p − p∗⟩ ∀p ∈ ∆m

= ⟨z(p∗),p⟩ − ⟨z(p∗),p∗⟩︸ ︷︷ ︸
≤0

≥ ⟨z(p∗),p⟩ ∀p ∈ ∆m

≥ ⟨z(λp∗),p⟩ ∀p ∈ ∆m

where the penultimate line follows from the fact that competitive economies satisfy

weak Walras’ law, and the last line from homogeneity of degree 0 of the excess

demand.

Now, plugging p = jj for all j ∈ [m] in the above, we have:

0 ≥ ⟨z(λp∗), jj⟩ ∀j ∈ [m]

≥ zj(λp∗) ∀j ∈ [m] .

That is, λp∗ is feasible. Now by non-satiation, since z(λp∗) ≤ 0m, we must have λp∗ ·

z(λp∗) ≥ 0. As by weak Walras’ law λp∗ ·z(λp∗) ≤ 0, we must have λp∗ ·z(λp∗) = 0,

meaning that λp∗ satisfies Walras’ law. Putting it all together, λp∗ must be a Walrasian

equilibrium. As such we must have
⋃
λ≥1 λSVI (∆m,−Z) ⊆ WE (m,Z)

To prove existence, it will be necessary to make assumptions on the continuity of the

excess demand, which necessitates the definition of continuous economies. We note

that in the following definition we assume upper hemicontinuity only on ∆m, since in

competitive, and more generally balanced, economies it is too restrictive to assume that

the excess demand Z is upper hemicontinuous on Rm+ , since any correspondence which

is homogeneous of degree 0 and continuous in the entirety of its domain is constant.
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Intuitively, continuous economies are those economies in which changes in the proportions

of prices lead to well-behaved changes in excess demands.

Definition 5.2.3 [Continuous economies].

A continuous economy is a Walrasian economy (m,Z) whose excess demand correspon-

dence Z is upper hemicontinuous on ∆m, non-empty-, compact-, and convex-valued.

Remark 5.2.1 [Continuity of excess demand].

In more stylized applications (see, for instance, Chapter 6 or Chapter 10), the excess demand

correspondence is in general defined so as to be continuous only on the interior of the unit

simplex, i.e., int(∆m), as the excess demand for a commodity can be infinite if its price is 0.

However, this issue in these stylized models only arises from a modeling choice, which

allows the demand of commodities to exceed the total amount of the commodity that

can be ever supplied. It is indeed possible to restrict the excess demand for a commodity

to be bounded by the total amount of the commodity that can be ever supplied in the

economy, without modifying the set of Walrasian equilibria. Arrow and Debreu (1954) take

exactly this approach in Section 3 of their paper when proving their seminal Walrasian

equilibrium existence result, and it is also the approach we will take in Chapter 10 to prove

convergence of price adjustment processes in Arrow-Debreu economies. This restriction

is also realistic from an economic perspective, since it is not possible for the economy to

consume more of a commodity that can exist, and resources in the real-world are indeed

scarce. Indeed, otherwise there would be no use for the economic sciences: the science of

resource allocation under scarcity.

With the above theorem in hand, we can leverage the fact that a strong solution is guar-

anteed to exist in continuous VIs (Theorem 4.1.1) to establish the existence of a Walrasian

equilibrium in continuous competitive economies.

Theorem 5.2.4.

The set of Walrasian equilibria of any continuous competitive economy (m,Z) is non-empty,

i.e.,WE (m,Z) ̸= ∅.

126



Proof of Theorem 5.2.4

By Theorem 5.2.3, we know that the set of strong solutions SVI (∆m,−Z) of the VI

(∆m,−Z) is a subset of the set of Walrasian equilibria of a competitive economy.

Now, notice that for a continuous competitive economy (m,Z), the corresponding

VI (∆m,−Z) is continuous. Hence, by Theorem 4.1.1, a strong solution to (∆m,−Z)

is guaranteed to exist, which in turn implies the existence of a Walrasian equilibrium

in continuous competitive economies.

5.3 Algorithms for Walrasian Equilibrium

5.3.1 Computational Model

To analyze the computational properties of algorithms for computing Walrasian equilib-

rium, we will take two approaches. For balanced economies, we will develop algorithms

with polynomial-time global convergence guarantees. For general Walrasian economies, we

do not expect such algorithms to exist, as by Theorem 5.2.1 the computation of a Walrasian

equilibrium is equivalent the PPAD-hard problem of solving a complementarity problem

(see, for instance, IEOR (2011)). As such, we will instead define a merit function (i.e., a

function whose set of minimizers coincide with the set of Walrasian equilibria), and provide

polynomial-time convergence guarantees to approximate stationary points of this merit

function (as defined in Chapter 4).

In the rest of this chapter, we will assume that the excess demand correspondence is

singleton-valued unless otherwise noted. Similar to Chapter 4, we will consider two classes

of methods to compute a Walrasian equilibrium, (first-order) price-adjustment processes

and second-order price-adjustment processes, both of which belong to the class of kth order

price adjustment processes.

Definition 5.3.1 [kth-order price-adjustment process].

Given some k ∈ N++, and a Walrasian economy (m,Z) for which the derivatives {∇jz}k−1
j=1

are well defined, and an initial iterate p(0) ∈ Rm+ , a kth-order price adjustment process π
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consists of an update function that generates the sequence of iterates {p(t)}t given by: for

all t = 0, 1, . . .,

x(t+1) .= π

(
t⋃
i=0

(
p(i), {∇jz(p(i))}k−1

j=0

))

The computational complexity results in this chapter will rely on the following com-

putational model, which has been broadly adopted in the literature (see, for instance,

Papadimitriou and Yannakakis (2010)).

Definition 5.3.2 [Walrasian Computational Model].

Given a Walrasian economy (m,Z) and a kth-order price adjustment process π, the com-

putational complexity of π is measured in term of the number of evaluations of the the

functions z,∇z, . . . ,∇kz.

5.3.2 Related Works

We review here some of the relevant computer science literature, on price-adjustment pro-

cesses for Walrasian equilibrium computation. This literature has in part been motivated by

applications of algorithms such as tâtonnement to load balancing over networks (Jain et al.,

2013) and to pricing of transactions on crypotocurrency blockchains (Leonardos et al., 2021;

Liu et al., 2022; Reijsbergen et al., 2021). A detailed inquiry into the computational proper-

ties of Walrasian equilibria was initiated by Devanur et al. (2008), who studied a special case

of the Arrow-Debreu competitive economy known as the Fisher market (Brainard et al.,

2000). This model, for which Irving Fisher computed equilibrium prices using a hydraulic

machine in the 1890s, is essentially the Arrow-Debreu model of a competitive economy,

but there are no firms, and buyers are endowed with only one type of commodity—an

artificial currency (Brainard et al., 2000; Nisan and Roughgarden, 2007). Devanur et al.

(2002) exploited a connection first made by Eisenberg (1961) between the Eisenberg-Gale

program and competitive equilibrium to solve Fisher markets assuming buyers with linear

utility functions, thereby providing a (centralized) polynomial-time algorithm for equi-

librium computation in these markets (Devanur et al., 2002; Devanur et al., 2008). Their
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work was built upon by Jain et al. (2005), who extended the Eisenberg-Gale program to

all Fisher markets in which buyers have continuous, quasi-concave, and homogeneous

utility functions, and proved that the equilibrium of Fisher markets with such buyers can

be computed in polynomial time by interior point methods.

Concurrent with this line of work on computing competitive equilibrium using cen-

tralized methods, a line of work on devising and proving convergence guarantees for

price-adjustment processes (i.e., iterative algorithms that update prices according to a

predetermined update rule) developed. This literature has focused on devising natural

price-adjustment processes, like tâtonnement, which might explain or imitate the movement

of prices in real-world markets. In addition to imitating the law of supply and demand, tâ-

tonnement has been observed to replicate the movement of prices in lab experiments, where

participants are given endowments and asked to trade with one another (Gillen et al., 2020).

Perhaps more importantly, the main premise for research on the computational properties

of competitive equilibrium in computer science is that for competitive equilibrium to be

justified, not only should it be backed by a natural price-adjustment process as economists

have long argued, but it should also be computationally efficient (Nisan and Roughgarden,

2007).

The first result on this question is due to Codenotti et al. (2005), who introduced a discrete-

time version of tâtonnement, and showed that in exchange economies that satisfy weak

gross substitutes (WGS), the tâtonnement process converges to an approximate competitive

equilibrium in a number of steps which is polynomial in the approximation factor and

size of the problem. Unfortunately, soon after this positive result appeared, Papadimitriou

and Yannakakis (2010) showed that it is impossible for a price-adjustment process based

on the excess demand function to converge to a competitive equilibrium in polynomial

time in general competitive economies, ruling out the possibility of Smale’s process (and

many others) justifying the notion of competitive equilibrium in all competitive economies.

Nevertheless, further study of the convergence of price-adjustment processes such as
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tâtonnement under stronger assumptions, or in simpler models than full-blown Arrow-

Debreu competitive economies, remains worthwhile, as these processes are being deployed

in practice (Jain et al., 2013; Leonardos et al., 2021; Liu et al., 2022; Reijsbergen et al., 2021).

Following Codenotti et al.’s (2005) initial analysis of tâtonnement in competitive economies

that satisfy WGS, Garg and Kapoor (2004) introduced an auction algorithm that also

converges in polynomial time for linear exchange economies. More recently, Bei et al. (2015)

established faster convergence bounds for tâtonnement in WGS exchange economies.

Another line of work considers price-adjustment processes in variants of Fisher markets.

Cole and Fleischer (2008) analyzed tâtonnement in a real-world-like model satisfying WGS

called the ongoing market model. In this model, tâtonnement once-again converges in

polynomial-time (Cole and Fleischer, 2008; Cole et al., 2010), and it has the advantage that

it can be seen as an abstraction for market processes. Cole and Fleischer’s results were later

extended by Cheung et al. (2012) to ongoing markets with weak gross complements (i.e.,

the excess demand of any commodity weakly increases if the price of any other commodity

weakly decreases, fixing all other prices) and ongoing markets with a mix of WGC and

WGS commodities. The ongoing market model studied in these two papers contains as

a special case the Fisher market; however, Cole and Fleischer (2008) assume bounded

own-price elasticity of Marshallian demand, and bounded income elasticity of Marshallian

demand, while Cheung et al. (2012) assume, in addition to Cole and Fleischer’s assumptions,

bounded adversarial market elasticity, which can be seen as a variant of bounded cross-

price elasticity of Marshallian demand, from below. With these assumptions, these results

cover Fisher markets with only a small range of the well known CES utilities, namely CES

Fisher markets with ρ ∈ [0, 1) and WGC Fisher markets with ρ ∈ (−1, 0].

Cheung et al. (2013) built on this work by establishing the convergence of tâtonnement in

polynomial time in nested CES Fisher markets, excluding the limiting cases of linear and

Leontief markets, but nonetheless extending polynomial-time convergence guarantees for

tâtonnement to Leontief Fisher markets as well. More recently, Cheung and Cole (2018)
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showed that Cheung et al.’s [2013] result extends to an asynchronous version of tâtonnement,

in which good prices are updated during different time periods. In a similar vein, Cheung

et al. (2019) analyzed tâtonnement in online Fisher markets, determining that tâtonnement

tracks competitive equilibrium prices closely provided the market changes slowly.

Another price-adjustment process that has been shown to converge to Walrasian equilib-

rium in Fisher markets is proportional response dynamics, first introduced by Wu and

Zhang (2007) for linear utilities; then expanded upon and shown to converge by Zhang

(2011) for all CES utilities; and very recently shown to converge in Arrow-Debreu exchange

economies with linear and CES (ρ ∈ [0, 1)) utilities by Brânzei et al. (2021). The study of

the proportional response process was proven fundamental when Cheung et al. (2013)

noticed its relationship to gradient descent. This discovery opened up a new realm of

possibilities in analyzing the convergence of Walrasian equilibrium processes. For example,

it allowed Cheung et al. (2018) to generalize the convergence results of proportional re-

sponse dynamics to Fisher markets for buyers with mixed CES utilities. This same idea was

applied by Cheung et al. (2013) to prove the convergence of tâtonnement in Leontief Fisher

markets, using the equivalence between mirror descent (Boyd et al., 2004) on the dual of

the Eisenberg-Gale program and tâtonnement, first observed by Devanur et al. (2008). More

recently, Gao and Kroer (2020) developed methods to solve the Eisenberg-Gale convex

program in the case of linear, quasi-linear, and Leontief Fisher markets.

An alternative to the (global) competitive economy model, in which an agent’s trading

partners are unconstrained, is the Kakade et al. (2004) model of a graphical economies.

This model features local markets, in which each agent can set its own prices for purchase

only by neighboring agents, and likewise can purchase only from neighboring agents.

Auction-like price-adjustment processes have been shown to converge in variants of this

model assuming WGS (Andrade et al., 2021).
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5.4 Price Adjustment Processes for Walrasian Equilibrium

The most common class of algorithms for computing a Walrasian equilibrium are first-order

price adjustment processes simply called price adjustment processes (Papadimitriou and

Yannakakis, 2010).

Definition 5.4.1 [Price-adjustment process].

Given a Walrasian economy (m, z) and an initial price vector p(0) ∈ Rm+ , a price adjustment

process π consists of an update function π :
⋃
τ≥1(Rm+ × Rm) → Rm+ that generates a

sequence of prices {p(t)}t given by: for all t = 0, 1, . . .,

p(t+1) .= π

(
t⋃

k=0

(p(k), z(p(k)))

)
An important class of price-adjustment processes are natural price-adjustment processes.

Intuitively, these are price-adjustment processes where the price of each commodity is

updated using only information about the past prices of the commodity itself and its excess

demand. These processes are natural in the sense that the price of each commodity is

updated only with information relevant to it, and as such if each commodity is sold by a

fictional seller, the seller can update the price of its good without having to coordinate with

other sellers.

Definition 5.4.2 [Natural Price-Adjustment Process].

Given a Walrasian economy (m, z) and an initial price vector p(0) ∈ Rm+ , a price adjustment

process π is said to be natural if for all commodities, the price adjustment process can be

written as as π .
= (π1, . . . , πm), where for all commodities j ∈ [m], πj :

⋃
τ≥1(R+×R)→ Rm+

s.t. for all t = 0, 1, . . .,

p
(t+1)
j

.
= πj

(
t⋃

k=0

(p
(k)
j , zj(p

(k)))

)
The canonical type of natural price adjustment processes are tâtonnement processes (Walras,

1896; Arrow and Hurwicz, 1958).

Definition 5.4.3 [Tâtonnement process].

A tâtonnement process is a natural price adjustment process π
.
= (π1, . . . , πm) s.t. for all
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j ∈ [m] and t ∈ N++, there exists a function g : R+ × R→ R that satisfies:

πj

(
t⋃

k=0

(p
(k)
j , zj(p

(k)))

)
.
= g(p

(t)
j , zj(p

(t))) (5.7)

Remark 5.4.1 [On tâtonnement].

The verb tâtonner is a French word that means to search by trial and error, often connoting

a sense of blindness, as the search relies solely on local information. Accordingly, the

noun form tâtonnement describes a heuristic search process based on trial and error. The

tâtonnement process is a memoryless price adjustment mechanism where each commodity’s

next price is determined solely by its current price and excess demand. The term tâtonnement

is thus aptly chosen, as the price search for each commodity is heuristic, ignoring both

past prices and excess demands as well as the current prices and excess demands of other

goods.

Traditionally, g is further restricted to be sign preserving, i.e., ∀p ∈ R+, z ∈ R, sign(g(p, z)) =

sign(z), as with this restriction in place a tâtonnement process can be seen a mathematical

model of the law supply and demand, which stipulates that the price of any commodity

in the economy that is demanded (respectively, supplied) in excess will rise (respectively,

decrease) (Walras, 1896; Arrow and Hurwicz, 1958).

Now notice that the mirror gradient method applied to the VI (Rm+ ,−Z) defines a family of

tâtonnement processes parametrized by the kernel function h, which we will call the mirror

tâtonnement process. While continuous-time variants of the tâtonnement processes are known

to converge in Arrow-Debreu economies for which the excess demand z is for instance

monotone (in which case the excess demand is said to satisfy the law of demand, see

Definition 5.4.8), as Example 4.3.1 shows the mirror tâtonnement process is not guaranteed

to converge in such economies.4 Nevertheless, recall that we can instead apply the mirror

extragradient algorithm to the VI (Rm+ ,−Z), which as we have shown, can be guaranteed

to converge in VIs that satisfy the Minty condition using the tools developed in Chapter 4.

To this end, we introduce the class of variationally stable Walrasian economies.
4While this example is presented for VIs, by the equivalence between VIs and Walrasian economies, it also

applies to Walrasian economies.
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Definition 5.4.4 [Variationally Stable Walrasian Economies].

A Walrasian economy (m,Z), is said to be variationally stable on P ⊆ Rm+ iff there exists

p∗ ∈ P s.t. for all p ∈ P and z(p) ∈ Z(p),

⟨z(p),p∗ − p⟩ ≥ 0

If a balanced economy is variationally stable on ∆m, then we refer to the economy simply

as variationally stable.

To understand the variational stability condition, consider a fictional auctioneer who buys

the commodities sold in the economy and sells them back at prices p ∈ Rm+ . The profit of

the auctioneer for her transaction is given by ⟨z(p),p⟩. Now suppose that the auctioneer

were to change the prices at which she bought and sold her commodities to prices p∗ ∈ Rm+ ,

while fixing the quantities of goods bought and sold at the excess demand z(p). Then the

auctioneer’s profit would be given by ⟨z(p),p∗⟩ − ⟨z(p),p⟩ = ⟨z(p),p∗ − p⟩. The Minty

condition requires the existence of a price vector p∗ ∈ Rm+ , which in hindsight looks to the

auctioneer like a more profitable price vector than p.

5.4.1 Computation of Walrasian Equilibrium in Balanced Economies

A surprising and important result, which is described by the following (new) lemma, is

that the VI ([0, 1]m,−Z) associated with any balanced economy (m,Z) satisfies the Minty

condition, i.e., any balanced economy is variationally stable on [0, 1]m.

Lemma 5.4.1 [Balanced Economies are Variationally Stable on the Unit Box].

Any balanced economy (m,Z) is variationally stable on [0, 1]m. In particular, letting p∗ .
=

0m, for all prices p ∈ [0, 1]m and z(p) ∈ Z(p), we have ⟨z(p),p∗ − p⟩ ≥ 0.
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Proof of Lemma 5.4.1

Let (m,Z) be a balanced economy. Setting p∗ .
= 0m, we have:

⟨z(p),p∗ − p⟩ = ⟨z(p),0m − p⟩

= ⟨z(p),0m⟩︸ ︷︷ ︸
=0

−⟨z(p),p⟩

= −⟨z(p),p⟩︸ ︷︷ ︸
≤0

≥ 0 ,

where the last line follow from weak Walras’ law, which is assumed to hold in

balanced economies.

This lemma is highly surprising, as it suggests that in balanced economies, which include

among others Arrow-Debreu competitive economies (see Chapter 10 for additional details),

under suitable continuity assumptions, first-order methods for the VI ([0, 1]m,−Z) are

guaranteed to converge to a strong solution.

Hence, with Lemma 5.4.1 in hand, we now turn our attention to solving the VI ([0, 1]m,−Z)—

or rather, the VI ([0, 1]m,−z), since we assume for our algorithms that the excess demand

is singleton-valued—and hence computing a Walrasian equilibrium with the mirror extra-

gradient method. Solving the VI ([0, 1]m,−z) with the mirror extragradient method, gives

rise to a family of price adjustment processes parameterized by the kernel function h which

we will call the mirror extratâtonnement process.

Remark 5.4.2 [Mirror Extratâtonnement is a Natural Price-Adjustment Process].

For the choice of a price space P .
= [0, 1]m, and any choice of kernel function s.t. h(p) .

=∑
j[m] hj(pj) for some {hj : Rm → R}j∈[m], the mirror extratâtonnement updates can be
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Algorithm 6 Mirror Extratâtonnement Process

Input: m, z, τ, η, h,P,p(0)

Output: {p(t)}t∈[τ]

1: for t = 1, . . . , τ do

2: p(t+0.5) ← argmin
p∈P

{〈
z(p(t)),p(t) − p

〉
+ 1

2ηdivh(p,p
(t))
}

3: p(t+1) ← argmin
p∈P

{〈
z(p(t+0.5)),p(t) − p

〉
+ 1

2ηdivh(p,p
(t))
}

return {p(t+0.5)}t∈[τ]

written for all commodities j ∈ [m] and t ∈ N as:

p
(t+0.5)
j ← argmin

pj∈[0,1]

{〈
zj(p

(t)), p
(t)
j − pj

〉
+

1

2η
divhj

(pj , p
(t)
j )

}
p
(t+1)
j ← argmin

pj∈[0,1]

{〈
zj(p

(t+0.5)), p
(t)
j − pj

〉
+

1

2η
divhj

(pj , p
(t)
j )

}
.

Further, multiplying the index of the sequence of price iterates, we can rewrite the above

update rule for all commodities j ∈ [m] and t ∈ N as:

p
(t+1)
j ← argmin

pj∈[0,1]

{〈
zj(p

(t)), p
(t)
j − pj

〉
+

1

2η
divhj

(pj , p
(1)
j )

}
p
(t+2)
j ← argmin

pj∈[0,1]

{〈
zj(p

(t+1)), p
(t)
j − pj

〉
+

1

2η
divhj

(pj , p
(t)
j )

}
.

That is, the mirror extratâtonnement process applies a tâtonnement update to the current

time-step’s prices, while on even time-steps, it applies a tâtonnement update to the previous

time-step’s prices. As such, the mirror extratâtonnement process can be interpreted as a

natural price adjustment process.

With the mirror extrâtonnement process, and Lemma 5.4.1 in hand, we can apply Theo-

rem 4.3.1 to prove the polynomial-time convergence of the mirror extrâtonnement process

(Algorithm 6).

Theorem 5.4.1 [Convergence of Mirror Extratâtonnement].

Consider the mirror extrâtonnement process run on the balanced economy (m, z) with a

1-strongly-convex and κ-Lipschitz-smooth kernel function h, any time horizon t ∈̇ N,
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any step size η > 0, a price space P .
= [0, 1]m, and any initial price vector p(0) ∈

[0, 1]m. Let {p(k),p(k+0.5)}t be the sequence of prices generated, and suppose there

exists λ ∈ (0, 1√
2η
] s.t. 1

2

∥∥z(p(k+0.5))− z(p(k))
∥∥2 ≤ λ2divh(p

(k+0.5),p(k)). If p
(τ)
best ∈

argminx(k+0.5):k=0,...,τ divh(p
(k+0.5),p(k)), then for some time horizon τ ∈̇O(κ

2m2divh (0m,p(0))
η2ε2 ),

p
(τ)
best is an ε-Walrasian equilibrium of (m, z). Furthermore, limt→∞ p(t+0.5) = limt→∞ p(t) =

p∗ is a Walrasian equilibrium of (m, z).

Proof of Theorem 5.4.1

Since (m, z) is a balanced economy, by Lemma 5.4.1, (m, z) is variationally stable on

[0, 1]m, and hence the VI ([0, 1]m,−Z) satisfies the Minty condition. Hence, as the

mirror extratâtonnement process is simply the mirror extragradient method run on

the VI ([0, 1]m,−Z), the assumptions of Theorem 4.3.1 are satisfied, and we obtain

the result.

The convergence guarantee provided by Theorem 5.4.1 is highly general, and does not

require Lipschitz-continuity of the excess demand z. Rather, the above theorem requires a

notion “Bregman-continuity over trajectories” of the extratâtonnement process. This broad

statement is purposeful, as it is in general not possible to guarantee Lipschitz-continuity

of the excess demand in balanced economies. Indeed, the only balanced economies with

a Lipschitz-continuous excess demand function are those with a constant excess demand

function.

To see this, suppose that z is λ-Lipschitz-continuous on [0, 1]m. By homogeneity of degree 0,

we have, for all α > 0 and p, q ∈ [0, 1]m, ∥z(p)− z(q)∥ = ∥z(αp)− z(αq)∥ ≤ λα ∥p − q∥.

Hence, taking α→ 0, we have, for all p, q ∈ [0, 1]m, z(q) = z(p).

Nevertheless, while Lipschitz-continuity over [0, 1]m is too restrictive, Lipschitz continuity

over paths of the mirror extratâtonnement process, which we call pathwise Lipschitz-
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continuity (i.e.,
∥∥z(p(k+0.5))− z(p(k))

∥∥ ≤ λ∥∥p(k+0.5) − p(k)]
∥∥)5 seems to be a mild assump-

tion that holds in a large class of Walrasian economies, as suggested by the experiments

reported in Section 5.4.3.

For choices of kernel functions h s.t. the associated Bregman divergence divh is not homoge-

neous of degree α > 0 (i.e., for all p, q ∈ Rm+ and α, λ > 0, divh(λp, λq) ̸= λαdivh(p, q)), we

define the following novel class, which seems likely to capture a broad swath of Walrasian

economies:

Definition 5.4.5 [Bregman-continuous Economies].

Given a modulus of continuity λ ≥ 0 and a kernel function h : P → R, a (λ, h)-Bregman-

continuous economy on P ⊆ Rm+ is a Walrasian economy (m,Z) whose excess demand

correspondence is singleton-valued (i.e., Z(p) .= {z(p)}) and (λ, h)-Bregman-continuous

on P , i.e., for all p, q ∈ P ,

1

2
∥z(p)− z(q)∥2 ≤ λ2divh(q,p)

When h is clear from context, we simply say that the economy and the excess demand z

are both λ-Bregman continuous on P .

Bregman continuous functions were introduced into the optimization literature in recent

years, and have been shown to contain a large number of important function classes which

are not continuous (see, for instance, Lu (2019)). Note that when the kernel function h

is chosen to be h(p) .
= 1

2∥p∥
2, λ-Bregman-continuity reduces to λ-Lipschitz continuity.

Furthermore, the literature on algorithmic general equilibrium theory has considered

variants of Bregman continuity to prove the polynomial-time convergence of algorithms to

Walrasian equilibria (see, for instance Cheung et al. (2013) and Cheung et al. (2018)). As

such, Bregman continuity seems a natural assumption to adopt here.

5Notice that when the kernel function in the statement of Theorem 5.4.1 is chosen to be h(p)
.
=

1
2
∥p∥2, the condition 1

2

∥∥∥z(p(k+0.5))− z(p(k))
∥∥∥2 ≤ λ2divh(p

(k+0.5),p(k)) reduces to ∥z(p(k+0.5))− z(p(k))∥≤

λ
∥∥∥p(k+0.5) − p(k)]

∥∥∥.
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With the definition of Bregman continuous economies in hand, we obtain the following

corollary of Theorem 5.4.1.

Corollary 5.4.1 [Convergence of Mirror Extrâtonnement under Bregman Continuity].

For some modulus of continuity λ > 0 and kernel function h, let (m, z) be a balanced

economy that is (λ, h)-Bregman-continuous on [0, 1]m. Consider the mirror extrâtonnement

process run on (m, z), with a 1-strongly-convex and κ-Lipschitz-smooth kernel function

h, any time horizon t ∈̇ N, any step size η ∈ (0, 1√
2λ
], a price space P .

= [0, 1]m, and any

initial price vector p(0) ∈ [0, 1]m. The outputs {p(t),p(t+0.5)}t satisfy the following: If p(τ)
best ∈

argminx(k+0.5):k=0,...,τ divh(p
(k+0.5),p(k)), then for some time horizon τ ∈̇O(κ

2m2divh (0m,p(0))
η2ε2 ),

p
(τ)
best is an ε-Walrasian equilibrium. Furthermore, limt→∞ p(t+0.5) = limt→∞ p(t) = p∗ is a

Walrasian equilibrium of (m, z).

While these convergence results are useful, it is not immediately clear what types of excess

demand functions satisfy Bregman-continuity. As a result, to characterize the Bregman-

continuity properties of Walrasian economies, we introduce the following economic param-

eters, which have been used extensively in the analysis of algorithms to compute Walrasian

equilibrium (see, for instance, Cole and Fleischer (2008)).

Definition 5.4.6 [Function Elasticity].

Given any function f : Rn → Rm, we define the elasticity ϵfj ,pk : Rn × Rn → R of output

fj w.r.t. input xk between any two points x ∈ Rn and y ∈ Rn as the percentage change in

fj that results from a one percent change from xk to yk:

ϵfj ,xk
(x,y)

.
=
fj(y)− fj(x)

fj(x)

xk
yk − xk

(5.8)

Overloading notation, we also define the instantaneous elasticity as follows:

ϵfj ,xk
(x,y)

.
= lim

h→0

ϵfj ,xk
(x,x + hjk)

h
=
∂xk

fj(x)xk
fj(x)

(5.9)

Definition 5.4.7 [Elastic Economies].

Given ϵ ≥ 0, an ϵ-elastic economy (m,d, s) is a Walrasian economy (m,Z) with an aggre-

gate demand function d : Rm+ → Rm+ and aggregate supply function s : Rm+ → Rm+ s.t.
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Z(p) .
= {d(p) − s(p)}, and for which the following two bounds on the elasticity of the

supply and demand hold:

max
p,q∈Rm

+

j,k∈[m]

∣∣ϵdj ,pk(p, q)∣∣ ≤ ϵ, max
p,q∈Rm

+

j,k∈[m]

∣∣ϵsj ,pk(p, q)∣∣ ≤ ϵ
The following lemma demonstrates that the excess demand of any ϵ-economy with bounded

aggregate demand and supply is Bregman-continuous w.r.t. to the log-barrier kernel h(p) =

−
∑

j∈[m] log(pj).

Lemma 5.4.2 [Bregman Continuity for Elastic Economies].

If (m,d, s) is an ϵ-elastic economy, then, for any 1-strongly-convex kernel function h :

Rm+ → R, the following bound holds:

1

2
∥z(q)− z(p)∥2 ≤

(
ϵ (∥d(p)∥+ ∥s(p)∥)

∥p∥∞

)2

divh(q,p)

Proof of Lemma 5.4.2

By the ϵ-elasticity assumption, we have, for all p, q ∈ ∆m and j, k ∈ [m],∣∣∣∣dj(q)− dj(p)dj(p)

pk
qk − pk

∣∣∣∣ ≤ ϵ
|dj(q)− dj(p)|
|dj(p)|

|pk|
|qk − pk|

≤ ϵ

|dj(q)− dj(p)| ≤
ϵ|dj(p)|
|pk|

|qk − pk|

|dj(q)− dj(p)|2 ≤
ϵ2|dj(p)|2

(pk)
2
|qk − pk|

2

Summing up over j ∈ [m], we have, for all k ∈ [m],

∥d(q)− d(p)∥2 ≤ ϵ2∥d(p)∥2

(pk)
2
|qk − pk|2

≤ ϵ2∥d(p)∥2

(pk)
2
∥q − p∥2

Since h is 1-strongly-convex, for all x,y ∈ X , divh(x,y) ≥ 1/2∥x − y∥2. Hence, we

have:

∥d(q)− d(p)∥2 ≤ 2ϵ2∥d(p)∥2

(pk)
2

divh(q,p)
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Taking the square root of both sides and then taking a minimum over k ∈ [m], we

have:

∥d(q)− d(p)∥ ≤ min
k∈[m]

ϵ∥d(p)∥
pk

√
2divh(q,p)

=
ϵ∥d(p)∥

maxk∈[m] pk

√
2divh(q,p)

=
ϵ∥d(p)∥
∥p∥∞

√
2divh(q,p)

By a similar argument, we also have:

∥s(q)− s(p)∥ ≤ ϵ∥s(p)∥
∥p∥∞

√
2divh(q,p)

Combining the two bounds, we then have:

∥z(q)− z(p)∥ = ∥d(q)− s(q)− d(p) + s(p)∥

≤ ∥d(q)− d(p)∥+∥s(q)− s(p)∥

≤ ϵ∥d(p)∥
∥p∥∞

√
2divh(q,p) +

ϵ∥s(p)∥
∥p∥∞

√
2divh(q,p)

≤ ϵ∥d(p)∥+∥s(p)∥
∥p∥∞

√
2divh(q,p)

Squaring both sides and reorganizing yields:

1

2
∥z(q)− z(p)∥2≤

(
ϵ (∥d(p)∥+∥s(p)∥)

∥p∥∞

)2

divh(q,p)

Lemma 5.4.2 suggests that boundedness of the excess demand and a lower bound on prices

is sufficient to ensure Bregman-continuity of the excess demand. Boundedness of the excess

demand can be ensured in large class of Walrasian economies including Arrow-Debreu

economies. While it is not possible to ensure that prices are bounded from below, since

Theorem 5.4.1 requires Bregman continuity over the paths of mirror extratâtonnement, we

have the following corollary of Theorem 5.4.1.

Corollary 5.4.2 [Convergence of Mirror Extratâtonnement].

Let (m,d, s) be a balanced and ϵ-elastic economy. Consider the mirror extrâtonnement
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process run on (m, z), with a 1-strongly-convex and κ-Lipschitz-smooth kernel function

h, any time horizon t ∈̇ N, any step size η > 0, a price space P .
= [0, 1]m, and any ini-

tial price vector p(0) ∈ [0, 1]m. The output sequence {p(t),p(t+0.5)}t satisfies the follow-

ing: If p(τ)
best ∈ argminx(k+0.5):k=0,...,τ divh(p

(k+0.5),p(k)), and if the step size satisfies η ≤

mink∈[τ]

{
∥p(t)∥∞

ϵ(∥d(p(t))∥+∥s(p(t))∥)

}
, then for some τ ∈̇O(κ

2m2divh (0m,p(0))
η2ε2 ), p(τ)

best is an ε-Walrasian

equilibrium. Furthermore, if the step size instead satisfies η ≤ mink∈N

{
∥p(t)∥∞

ϵ(∥d(p(t))∥+∥s(p(t))∥)

}
,

then limt→∞ p(t+0.5) = limt→∞ p(t) = p∗ is a Walrasian equilibrium.

Beyond Corollary 5.4.2 we are unable to obtain a stronger polynomial-time convergence

result for elastic balanced economies. Such a result may be obtainable using a more

fine-grained analysis based on a particular kernel function, or perhaps under additional

assumptions. We describe some possible directions for future work, and provide an

example of how stronger convergence results using a more fine-grained analysis can be

obtained using different kernel functions in Chapter 6.

Remark 5.4.3 [Directions for future work].

For balanced economies, one suitable choice of kernel function is the logistic loss

hLL(p)
.
=
∑

j∈[m]

[
pj log(pj) + (1− pj) log(1− pj)

]
defined on P .

= [0, 1]m, which defines

the logistic divergence divhLL
(p, q)

.
=
∑

j∈[m]

[
pj log

(
pj
qj

)
+ (1− pj) log

(
1−pj
1−qj

)]
. For this

choice of kernel function, the mirror extratâtonnement process reduces to the logistic ex-

tratâtonnement process, defined as follows: for all commodities j ∈ [m] and time horizons

t ∈ N,

p
(t+0.5)
j

.
=

1

1 +
1−p(t)j

p
(t)
j

e−ηzj(p(t))

p
(t+1)
j

.
=

1

1 +
1−p(t)j

p
(t)
j

e−ηzj(p(t+0.5))

This kernel function has three desirable properties. First, the price updates associated with

logistic loss require no projection, and as such the logistic extratâtonnement process is a

highly natural price adjustment process. Second, logistic divergence is not homogeneous,

and as such Bregman continuity w.r.t. logistic loss does not imply that the excess demand
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is constant. Third, the value of the logistic divergence function tends to infinity as any one

of the prices tends to 0, i.e., for all p ∈ [0, 1]m, limq→0 divhLL
(p, q) → ∞, which is highly

desirable, since for many Walrasian economies, the excess demand when the price of any

good heads to 0, is strictly positive.

Remark 5.4.4 [Contributions, and Connection to Impossibility Results].

To the best of our knowledge, Corollary 5.4.2 is the most general convergence guarantee

known for (natural) price adjustment processes in Walrasian economies. As we will show in

Chapter 10, this result also implies the convergence of price adjustment processes to a Wal-

rasian equilibrium in the canonical class of Walrasian economies known as Arrow-Debreu

economies, for which the excess demand is Bregman-continuous. This in turn makes the

mirror extratâtonnement process the first price adjustment process with a global polynomial-

time convergence guarantee to Walrasian equilibrium in Arrow-Debreu economies (i.e.,

Arrow-Debreu competitive equilibrium), without imposing the highly restrictive weak

gross substitutes assumption.

Theorem 5.4.1 might, at first, seem to contradict the impossibility result of Papadimitriou

and Yannakakis (2010), which states that for any price adjustment process π, there exists

a balanced economy (m, z) that is λ-Lipschitz-continuous on ∆m for which π fails to

converge to an ε-Walrasian equilibrium in poly(1/ε) evaluations of the excess demand

function. However, we assume that the Walrasian economy is Lipschitz-continuous on [0, 1]m,

rather than ∆m. As such, as our continuity assumption is stronger, so our computational

result does not contradict the aforementioned impossibility result. Furthermore, our result

demonstrates that the computational impossibility results for Walrasian equilibria arise

because of “edge case” Walrasian economies in which the excess demand is not sufficiently

continuous. We contend that polynomial-time computation of Walrasian equilibrium in

balanced economies economies via price adjustment processes is possible.

Our result is also not in contradiction with PPAD-hardness results on the computation of

Arrow-Debreu equilibrium prices in Leontief Arrow-Debreu economies (Codenotti et al.,
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2006; Deng and Du, 2008) and additively separable, piecewise linear and concave Arrow-

Debreu economies (Chen et al., 2009). Without further assumptions on such economies, the

excess demand z can only be shown to be Lipschitz-continuous on ∆m, and not on [0, 1]m.

Beyond the general results obtained in this section, next, to obtain stronger convergence

results, we restrict our attention to competitive economies that satisfy WARP.

5.4.2 Computation of Walrasian Equilibrium in Variationally Stable Competitive

Economies

In light of Lemma 5.4.2, a sensible question to investigate is whether the mirror extratâton-

nement process can be guaranteed to converge when the price space is chosen to be P .
= ∆m,

thus guaranteeing Bregman-continuity of the excess demand, since maxp∈∆
1

maxk∈[m] pk
= 1

m .

However, the set of Walrasian equilibria of any balanced economy (m,Z) is not necessarily

a subset of the strong solutions of the VI (∆m,Z). Nevertheless, if the economy (m,Z) is

assumed to be competitive, then by Theorem 5.2.3, the set of strong solutions of the VI

(∆m,Z) is a subset of the set of Walrasian equilibria of (m,Z).

As the price spaceP = ∆m does not include the zero vector 0m, which ensures that balanced

economies are variationally stable, the restriction of the price space to ∆m effectively

“destabilizes” the economy, making the computation of a Walrasian equilibrium intractable.

To overcome this challenge, we focus our attention on the class of competitive economies

that are variationally stable on ∆m.

Remark 5.4.5 [Interpreting Minty’s Condition].

For balanced economies, by weak Walras’ law, a sufficient condition for the economy to

be variationally stable on ∆m is the existence of p∗ ∈ ∆m s.t. for all prices p ∈ ∆m and

z(p) ∈ Z(p),

⟨z(p),p∗⟩ ≥ 0

Now, suppose there exists a commodity j ∈ [m] that is (weakly) demanded in excess for all

p ∈ ∆m, i.e., zj(p) ≥ 0. Then, setting p∗ = jj , we have ⟨z(p),p∗⟩ = ⟨z(p), jj⟩ = zj(p) ≥ 0.
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Hence, if there is a good that is never supplied in excess, the economy is variationally

stable.

Alternatively, a balanced economy is variationally stable on ∆m whenever there exist

two commodities j, k ∈ [m] whose excess demands are negatively proportional to one

another at all prices, i.e., ∃α > 0, s.t. zj(p) ≥ −αzk(p). Then, setting p∗ = 1
1+αjj +

α
(1+α)jk,

we have ⟨z(p),p∗⟩ = 1
1+αzj(p) +

α
(1+α)zk(p) ≥

−α
1+αzk(p) +

α
(1+α)zk(p) = 0. In light of

this observation, the variational stability assumption on ∆m can be seen as a rather mild

assumption, as commodities whose excess demands are negatively correlated are abundant

in the real world. For instance, electricity and batteries: whenever the excess demand for

electricity is positive, this should mean that there is no need to store electricity; that is, the

excess demand for batteries is negative.

We now discuss some important classes of Walrasian economies that are variationally stable

on ∆m. The most basic class comprises those economies that satisfy the law of supply and

demand. Intuitively, the excess demand in these economies is downward sloping.

Definition 5.4.8 [Law of Supply and Demand Economies].

Given a Walrasian economy (m,Z), an excess demand correspondence is said to satisfy the

law of supply and demand iff

⟨z(q)− z(p), q − p⟩ ≤ 0 for all z(p) ∈ Z(p), z(q) ∈ Z(q) (5.10)

If the excess demand correspondence of a Walrasian economy satisfies the law of supply and

demand, we refer to the economy colloquially as a law of supply and demand economy.

We note that the excess demand of a Walrasian economies satisfies the law of supply and

demand iff −Z is monotone. This implies that −Z is quasimonotone, and hence for any

non-empty and compact price space P ⊆ Rm+ , the VI (P,−Z) satisfies the Minty condition

(see Lemma 3.1 of He (2017)), meaning that any Walrasian economy which satisfies the law

of supply and demand is variationally stable on P .
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Another important class of Walrasian economies that are variationally stable on ∆m is the

class that satisfies the weak gross substitutes condition. Intuitively, these are Walrasian

economies for which the excess demand for a given good can only increase when the price

of some other good increases. While we omit the proof as it is involved, we note that

any continuous balanced weak gross substitutes Walrasian economy (m,Z) that satisfies

Walras’ law (i.e., for all p ∈ Rm+ , z(p) ∈ Z(p) and p · z(p) = 0) is a subset of the class of

variationally stable economies on P ⊆ Rm+ , for any non-empty and compact price space P

(see, for instance, Lemma 5 of Arrow et al. (1959)).

Definition 5.4.9 [Weak Gross Substitutes Economies].

Given a Walrasian economy (m,Z), an excess demand correspondence is said to satisfy the

weak gross substitutes condition (WGS) iff for all p, q ∈ Rm+ s.t. for some k ∈ [m], qk > pk

and for all j ̸= k, qj = pj , we have:

zj(q) ≥ zj(p) for all z(p) ∈ Z(p), z(q) ∈ Z(q) (5.11)

If the above inequality holds strictly, then the excess demand is said to satisfy the gross

substitutes condition (GS). Further, if the excess demand correspondence of a Walrasian

economy satisfies WGS (respectively, GS), we refer to the economy colloquially as a WGS

(respectively, GS) economy.

Going further, we can show that any Walrasian economy which satisfies the well-known

weak axiom of revealed preferences (Afriat, 1967; Arrow and Hurwicz, 1958) is variationally

stable on ∆m (and, more generally, on any non-empty and compact price space P ⊆ Rm). To

this end, let us first define the weak axiom of revealed preferences for Walrasian economies.

Definition 5.4.10 [WARP excess demand].

Given a Walrasian economy (m,Z), an excess demand correspondence is said to satisfy the

weak axiom of revealed preferences (WARP) iff for all p, q ∈ P , z(p) ∈ Z(p), z(q) ∈ Z(q)

with z(p) ̸= z(q):

⟨z(q),p⟩ ≤ ⟨z(q), q⟩ implies ⟨z(p), q⟩ > ⟨z(p),p⟩
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If the excess demand correspondence of a Walrasian economy satisfies WARP, we refer to

the economy colloquially as a WARP economy.

Intuitively, a WARP excess demand function is one at which, when the auctioneer is

deciding between prices p or prices q so as to maximize profit, if q is weakly more profitable

when the excess demand is z(q), then q is strictly more profitable when the excess demand

is z(p).

Remark 5.4.6.

This definition of (WARP) is adapted to arbitrary Walrasian economies, and as such is

a generalization of the usual definition for economies that satisfy Walras’ law (i.e., for

all p ∈ Rm+ , p · z(p) = 0), which requires that Z is singleton-valued and ⟨z(q),p⟩ ≤

0 and z(p) ̸= z(q) =⇒ ⟨z(p), q⟩ > 0 (i.e., for all p ∈ Rm+ , p · z(p) = 0).

As we show next, WARP implies that −Z is pseudomonotone in balanced economies.6

Lemma 5.4.3 [WARP =⇒ pseudomonotone ].

If the excess demand correspondence Z of a Walrasian economy (m,Z) satisfies WARP,

then its negation −Z, the excess supply is pseudomonotone.

Proof

If Z satisfies WARP, and ⟨−z(q), q − p⟩ = ⟨z(q),p − q⟩ ≤ 0, then ⟨−z(p), q − p⟩ =

⟨z(p),p − q⟩

If z(p) ̸= z(q), then, by WARP, ⟨z(p),p − q⟩ < 0.

Otherwise, if z(p) = z(q), then ⟨z(p),p − q⟩ = ⟨z(q),p − q⟩ ≤ 0.

That is, if Z satisfies WARP, then

⟨−z(q), q − p⟩ ≤ 0 =⇒ ⟨−z(p), q − p⟩ ≤ 0

Hence, −Z is pseudomonotone.

6To be more precise, we note that an excess demand function Z satisfies WARP iff −Z is strictly pseu-
domonotone. However, as this result will not be used, we present the more general result, which holds for the
direction of interest.
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An important consequence of Lemma 5.4.3 is that since −Z is pseudomonotone, for any

non-empty and compact price space P ⊆ Rm+ , the VI (P,−Z) satisfies the Minty condition

(see Lemma 3.1 of He (2017)). As a result, we have the following corollary of Lemma 5.4.3.

Corollary 5.4.3 [WARP =⇒ Variationally Stable].

Any Walrasian economy that satisfies WARP is variationally stable on any non-empty and

compact price space P ⊆ Rm+ .

To use Lemma 5.4.2, we have to ensure that the excess demand of the economy is bounded,

which, as we will show in Chapter 10, is a mild assumption satisfied in all Arrow-Debreu

economies—thus necessitating the following definition.

Definition 5.4.11 [Bounded economies].

Given z ≥ 0, a z-bounded economy (m,d, s) is a Walrasian economy (m,Z) that consists

of an aggregate demand function d : Rm+ → Rm+ and an aggregate supply function

s : Rm+ → Rm+ s.t. Z(p) .= {d(p)} − {s(p)} and the following bounds hold:

∥d∥∞≤ z ∥s∥∞≤ z

With these definitions in place, we can now apply Lemma 5.4.2 to prove the polynomial-

time convergence of the mirror extrâtonnement process in conjunction with Theorem 5.4.1.

Theorem 5.4.2 [Mirror Extratâtonnement Convergence in ∆m].

For any ϵ, z > 0, let (m,d, e) be an ϵ-elastic and z-bounded balanced economy that is

variationally stable on ∆m. Consider the mirror extrâtonnement process run on (m, z), with

a 1-strongly-convex and κ-Lipschitz-smooth kernel function h, any time horizon τ ∈̇ N, any

step size η ∈ (0, 1
2
√
2mϵz

], a price space P .
= ∆m, and any initial price vector p(0) ∈ ∆m. The

output sequence {p(t),p(t+0.5)}t satisfies the following convergence bound:

min
k=0,...,τ

max
p∈∆
⟨z(p(k+0.5)),p − p(k+0.5)⟩ ≤ 2

√
2(1 + κ)

η

√
maxp∈∆ divh(p,p(0))

√
τ

Furthermore, limt→∞ p(t+0.5) = limt→∞ p(t) = p∗ is a Walrasian equilibrium.
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Proof of Theorem 5.4.2

Since (m, z) is variationally stable on ∆m, the VI (∆m,−Z) satisfies the Minty condi-

tion. In addition, since by assumption, the economy is ϵ-elastic and z-bounded, by

Lemma 5.4.2, z is (2mϵz)-Bregman-continuous on ∆m. Therefore,

1

2
∥z(q)− z(p)∥2 ≤

(
ϵ (∥d(p)∥+∥s(p)∥)

∥p∥∞

)2

divh(q,p)

≤ max
p∈∆m

(
ϵ (∥d(p)∥+∥s(p)∥)

∥p∥∞

)2

divh(q,p)

≤
(
ϵ (∥d∥∞+∥s∥∞)

minp∈∆m
∥p∥∞

)2

divh(q,p)

≤

(
2ϵz
1
m

)2

divh(q,p)

≤ (2mϵz)2 divh(q,p) .

That is, the excess demand is Bregman-continuous with a continuity modulus which

depends on the number of commodities, the elasticity of the excess demand, and the

maximum absolute value of the excess demand.

Now, given the output sequence {p(t),p(t+0.5)}t , let

p
(τ)
best∈̇ argminx(k+0.5):k=0,...,τ divh(p

(k+0.5),p(k)). As mirror extratâtonnement is

simply the mirror extragradient method run on the VI (∆m,−Z), and as the

assumptions of Theorem 4.3.1 are satisfied, we arrive at the following bound:

min
k=0,...,τ

max
p∈∆
⟨−z(p(k+0.5)),p(k+0.5) − p⟩ ≤ 2(1 + κ)diam(∆m)

η

√
maxp∈∆ divh(p,p(0))

√
τ

min
k=0,...,τ

max
p∈∆
⟨z(p(k+0.5)),p − p(k+0.5)⟩ ≤ 2

√
2(1 + κ)

η

√
maxp∈∆ divh(p,p(0))

√
τ

Furthermore, limt p
(t) = limt→∞ pt+0.5 = p∗ is a Walrasian equilibrium.

We make a few remarks before turning our attention to the analysis of the mirror extragra-

dient method in the Scarf economy.
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Remark 5.4.7 [Contribution].

In a seminal paper, Arrow and Hurwicz (1958) show that a continuous version of tâton-

nement converges to a Walrasian equilibrium in Walrasian economies that satisfy WARP. To

the best of our knowledge, a corresponding result was not known for discrete-time tâton-

nement, the variant studied here. As such, ours is the first polynomial-time computation

result for ε-Walrasian equilibrium. It is also the first convergence result of any kind for a

price adjustment process for the class of Arrow-Debreu economies that satisfy WARP.

Remark 5.4.8 [Boundedness of excess demand].

The assumption that there exists z ≥ 0 s.t. for all t ∈ [τ],
∥∥z(p(t))

∥∥ ≤ z is a common

assumption in the analysis of discrete-time price adjustment processes (see, for instance,

Cheung et al. (2013) or Chapter 6), and is often guaranteed by a more fine-grained analysis

of the Walrasian economy at hand. We present Theorem 5.4.2 in this format to maintain

generality for future work.

Remark 5.4.9 [Local convergence of mirror extratâtonnement].

The local convergence behavior of mirror extratâtonnement can similarly be inferred from

Theorem 5.4.2 by instead applying Theorem 4.3.2, and replacing the assumption that the

Arrow-Debreu satisfies the Minty condition with the assumption that the initial price iterate

starts close enough to a local Minty solution.

Mirror Extratâtonnement in Scarf Economies

One of the earliest negative and most discouraging results in the literature on price-

adjustment processes is an example of a Walrasian economy provided by Herbert Scarf

in which continuous-time tâtonnement cycles around the Walrasian equilibrium of the

economy, while discrete-time variants spiral away from the equilibrium, starting from any

non-equilibrium initial conditions.

Definition 5.4.12.

A Scarf economy zscarf is a Walrasian economy (3, zscarf) with 3 goods for which the excess

150



demand is singleton-valued and given by the function:

zscarf(p)
.
=


p1

p1+p2
+ p3

p1+p3
− 1

p1
p1+p2

+ p2
p2+p3

− 1

p2
p2+p3

+ p3
p1+p3

− 1


The following lemma summarizes properties of the Scarf economy.

Lemma 5.4.4 [Properties of the Scarf Economy].

The Scarf economy is a balanced economy that satisfies Walras’ law, i.e., for all p ∈ Rm+ ,

p · zscarf(p) = 0. Further, the set of Walrasian equilibrium of the Scarf economy zscarf is

given byWE (zscarf)
.
= {λ13 | λ > 0}.

Proof of Lemma 5.4.4

First, notice that the Scarf economy is homogeneous of degree 0. That is, for all λ ≥ 0,

we have:

zscarf(λp)
.
=


λp1

λp1+λp2
+ λp3

λp1+λp3
− 1

λp1
λp1+λp2

+ λp2
λp2+λp3

− 1

λp2
λp2+λp3

+ λp3
λp1+λp3

− 1

 =


p1

p1+p2
+ p3

p1+p3
− 1

p1
p1+p2

+ p2
p2+p3

− 1

p2
p2+p3

+ p3
p1+p3

− 1

 = zscarf(p)

Second, for all p ∈ Rm, we have:

p · zscarf(p) =
p21

p1 + p2
+

p1p3
p1 + p3

− p1 +
p1p2
p1 + p2

+
p22

p2 + p3
− p2 +

p2p3
p2 + p3

+
p23

p1 + p3
− p3

=
p21 + p1p2
p1 + p2

+
p22 + p2p3
p2 + p3

+
p23 + p1p3
p1 + p3

− p1 − p2 − p3

=
p1(p1 + p2)

p1 + p2
+
p2(p2 + p3)

p2 + p3
+
p3(p3 + p1)

p1 + p3
− p1 − p2 − p3

= 0

Finally, observe that for p∗ = 1m, we have zscarf(p∗) = 0m, and thus, p∗ ·zscarf(p∗) =

0. Notice that this equilibrium is unique up to positive scaling since if the price of any

commodity is changed from p∗, then the excess demand for another commodity is

guaranteed to decrease while the excess demand of some other commodity increases.
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Our next result shows that the Scarf economy is variationally stable and Lipschitz-

continuous for any suitably chosen price space.

Lemma 5.4.5 [Variational Stability and Bregman-continuity of the Scarf Economy].

Any Scarf economy zscarf is variationally stable on ∆m. Further, for any p ∈ (0, 1/3) and

any 1-strongly-convex kernel function h : R3
+ → R, the Scarf economy zscarf is variationally

stable and ( 3
p2 , h)-Bregman-continuous on [p, 1]3.

Proof of Lemma 5.4.5

Part 1: Variational stability on ∆m. We claim that for p∗ = (1/3, 1/3, 1/3), the Scarf

economy is variationally stable on ∆m, i.e., for all prices p ∈ ∆3 and all z(p) ∈ Z(p),

we have
〈
zscarf(p),p∗ − p

〉
≥ 0.

First, notice that expanding the expression
〈
zscarf(p),p∗ − p

〉
yields: for all p ∈ ∆m,〈

zscarf(p),p∗ − p
〉
=
〈
zscarf(p),p∗

〉
−
〈
zscarf(p),p

〉
︸ ︷︷ ︸

=0

=
〈
zscarf(p),p∗

〉
= 2

p1
p1 + p2

+ 2
p2

p2 + p3
+ 2

p3
p1 + p3

− 1/3− 1/3− 1/3︸ ︷︷ ︸
=−1

= 2
p1

p1 + p2
+ 2

p2
p2 + p3

+ 2
p3

p1 + p3
− 1

We proceed by cases.

Case 1 p1 ≥ p2.〈
zscarf(p),p∗ − p

〉
= 2

p1
p1 + p2

+ 2
p2

p2 + p3︸ ︷︷ ︸
≥0

+2
p3

p1 + p3︸ ︷︷ ︸
≥0

−1

≥ 2
p1

p1 + p2︸︷︷︸
≤p1

− 1

≥ 2
p1

p1 + p1
− 1

= 1− 1

= 0
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Case 2 p1 < p2.〈
zscarf(p),p∗ − p

〉
= 2

p1
p1 + p2︸ ︷︷ ︸

≥0

+2
p2

p2 + p3
+ 2

p3
p1 + p3

− 1

= 2
p2

p2 + p3
+ 2

p3
p1︸︷︷︸
<p2

+p3
− 1

= 2
p2

p2 + p3
+ 2

p3
p2 + p3

− 1

= 2
p2 + p3
p2 + p3

− 1

= 2− 1

≥ 0

Hence, it holds that
〈
zscarf(p),p∗ − p

〉
≥ 0, and the Scarf economy is variationally

stable on ∆m.

Part 2: Variational stability and Bregman-continuity on [p, 1]3. First, for varia-

tional stability on [p, 1], observe that the proof for Case 1 applies directly, by simply

replacing ∆m by [p, 1].

Second, notice that the Scarf excess demand is differentiable, with its Jacobian matrix

given by:

∇zscarf(p) =


− p1

(p1+p2)
2 − p3

(p1+p3)
2 − p1

(p1+p2)
2 − p3

(p1+p3)
2

− p1
(p1+p2)

2 − p1
(p1+p2)

2 − p3
(p2+p3)

2 − p2
(p2+p3)

2

− p3
(p1+p3)

2 − p3
(p2+p3)

2 − p2
(p2+p3)

2 − p3
(p1+p3)

2


Thus, the Jacobian consists of entries of the form of f(x, y) .= x

(x+y)2 . For x, y ∈ [p, 1],

we have |f(x, y)| ≤ 1
4p2 . This means that the absolute value of the off-diagonal

entries of ∇zscarf(p) are bounded by 1
4p2 , while the diagonal entries are bounded by

1
2p2 . Hence, for all p ∈ [p, 1]3, it holds that ∥∇z(p)∥1 ≤

3
2p2 + 6

4p2 = 3
p2 . Therefore,

by the mean value theorem, zscarf is 3
p2 -Lipschitz-continuous on [p, 1]3, i.e., for all
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p, q ∈ [p, 1]3, ∥z(p)− z(q)∥ ≤ 3
p2 ∥p − q∥. Now, since h is 1-strongly-convex, we

have, for all p, q ∈ R3
+, 1

2 ∥p − q∥2 ≤ divh(p, q). Hence, for all p, q ∈ [p, 1]3,

1/2∥z(p)− z(q)∥2 ≤ 1

2

(
3

p2

)2

∥p − q∥2

≤

(
3

p2

)2

divh(p, q)

With the above lemma in hand, we can prove the convergence of mirror extratâtonnement in

the Scarf economy.

Corollary 5.4.4 [Convergence of Mirror Extrâtonnement in the Scarf Economy].

Let p ∈ (0, 1). Consider the mirror extrâtonnement process run on the Scarf economy zscarf ,

with a 1-strongly-convex and κ-Lipschitz-smooth kernel function h, any time horizon t ∈̇ N,

any step size η ∈̇ (0, 1√
2λ
], a price space P .

= [p, 1]3, and any initial price vector p(0) ∈ P . If

{p(t),p(t+0.5)}t is the output price sequence, then limt→∞ p(t+0.5) = limt→∞ p(t) = p∗ is a

Walrasian equilibrium.

Indeed, mirror extrâtonnement is a discrete-time natural price adjustment process that

converges to the unique Walrasian equilibrium in the Scarf economy.
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5.4.3 Experiments for Mirror Extratâtonnement Process

In this section, we first apply the tâtonnement and mirror extratâtonnement processes with

the kernel function h(p) .
= ∥p∥2 to solve the Scarf economy, with the goal of illustrating

the differing convergence behaviors between the two price-adjustment processes. We then

apply the mirror extratâtonnement process with kernel function h(p)
.
= ∥p∥2 to solve a

number of Arrow-Debreu exchange economies (Arrow and Debreu, 1954), with the goal of

demonstrating that our pathwise Bregman-continuity assumption holds, and that mirror

extratâtonnement can efficiently solve very large Walrasian economies in practice.

Figure 5.1: Phase Portraits of Tâtonnement and Extratâtonnement for the Scarf Economy

We record in Figure 5.1 the movement of prices in the Scarf economy for the tâtonnement

and mirror extratâtonnement processes, respectively. As is well-established by now, the price

sequence generated by tâtonnement, despite starting very close to the equilibrium prices

(1/3, 1/3, 1/3) spirals away from those prices, converging to (0, 0, 1), which is not a Walrasian

equilibrium. In contrast, the prices generated by the mirror extratâtonnement process spiral

inwards towards the equilibrium prices, despite starting far away from them.

An intuitive explanation of the observed behavior is as follows: As noted above, the

continuous-time variant of tâtonnement is known to cycle around the equilibrium prices

(Scarf, 1960). One way to interpret the discrete-time tâtonnement (respectively, mirror

155



extratâtonnement) process is as an explicit (respectively, implicit) discretization (Butcher,

2008) of the continuous-time tâtonnement dynamics. A well-known fact is that explicit

(respectively, implicit) discretization methods are unstable (respectively, stable) when

continuous-time dynamics cycle, thus explaining the observed behavior.

An Arrow-Debreu exchange economy (n,m,X , e,u) comprises m ∈ N commodities, n ∈ N

consumers each i ∈ [n] with a consumption space Xi, an endowment of commodities ei ∈

Rm+ , and a utility function ui : Xi → R. An Arrow-Debreu exchange economy (n,m,X , e,u)

can be represented as a bounded continuous competitive economy (m,Z), where the excess

demand correspondence is given as Z(p) .=
∑

i∈[n] argmax
xi∈Xi:xi·p≤ei·p

ui(xi)−
∑

i∈[n] ei.
7

Table 5.1: Summary of Setups for Arrow-Debreu Exchange Economy Experiments

Exp

No.

Num.

Comm.

Num.

Linear

Cons.

Num.

Cobb

-Doug.

Cons.

Num.

CES

ρ∈(0, 1)

Cons.

Num.

CES

ρ < 0

Cons.

Num.

Leont.

Cons.

1 500 0 0 0 0 600

2 500 0 0 0 600 0

3 500 0 0 600 0 0

4 500 0 600 0 0 0

5 500 600 0 0 0 0

6 1000 200 200 200 200 200

7 1000 0 200 200 200 200

We consider the following utility function classes in our experiments: 1. linear: ui(xi) =∑
j∈[m] vijxij ; 2. Cobb-Douglas: ui(xi) =

∏
j∈[m] x

vij
ij ; 3. Leontief: ui(xi) = minj∈[m] {xij/vij};

and 4. CES: ui(xi) = ρi

√∑
j∈[m] vijx

ρi
ij . Each class of utility functions is parameterized by

7We refer the reader to Chapter 10 on additional background and definitions regarding Arrow-Debreu
exchange economies.
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a vector of valuations vi ∈ Rn+, where each vij quantifies the value of commodity j to

consumer i. We summarize the experiments we run in Table 5.1. The parameters of each

economy are initialized randomly according to the uniform random distribution.8 We

record the results of our experiments in Figure 5.2, describing for what values of ε ≥ 0 the

prices generated throughout the algorithm converge to an ε-Walrasian equilibrium.

Figure 5.2: Results of Experiments 1-7

We observe that in all our experiments except Experiments 5 and 6—which include linear

consumers and are not as such covered by our theory, as the excess demand in such

economies is not singleton-valued—the mirror extratâtonnement process converges to a

Walrasian equilibrium. In all experiments, we verify and confirm that pathwise Bregman-

continuity holds, thus justifying this assumption. Finally, while our experiments obey

our theory, which suggests best-iterate convergence to an ε-Walrasian equilibrium in 1/ε2

time-steps, we observe last-iterate convergence in Experiment 4, corresponding to the case

of Cobb-Douglas consumers, for which even tâtonnement is known to converge in last

8For reproducibility purposes, we include our code ready to run on https://github.com/denizalp/
extratatonnement, and include all details of our experimental setup in Section 5.4.3.
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iterates. This finding suggests that convergence in last iterates might not be possible with

the mirror extratâtonnement process.
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5.5 Merit Function Methods for Walrasian Equilibrium

5.5.1 Merit Function Minimization via Second-Order Price-Adjustment Process

Going beyond Minty Arrow-Debreu economies, we can also apply the merit function

method we introduced in Chapter 4 to solve general Walrasian economies with excess

demand functions that are sufficiently smooth. Recall that by Theorem 5.2.1 the set of

Walrasian equilibria of any Walrasian economy (m, z) is equal to the set of strong solutions

SVI (Rm+ ,−z) of the VI (Rm+ ,−z). As such, by applying the merit function derived for VIs

in Lemma 4.4.1, we define the following merit function for Walrasian equilibrium:

Ξα(p)
.
= max

q∈Rm
+

⟨z(p), q − p⟩ − α

2
∥q − p∥2 (5.12)

We have the following corollary of Lemma 4.4.1, which characterizes this merit function.

Corollary 5.5.1 [Merit function for Walrasian equilibrium].

Given a Walrasian economy (m, z), for any α ≥ 0, the set of Walrasian equilibria of (m,Z)

is equal to argminp∈Rm
+
Ξα(p). Furthermore, if α > 0, then argmaxq∈Rm

+
{⟨z(p), q − p⟩ −

α
2 ∥q − p∥2} = {q∗(p)}, where

q∗(p) = argmax
q∈Rm

+

⟨z(p),p − q⟩ − α

2
∥q − p∥2 = ΠRm

+

[
p +

1

α
z(p)

]
.

In addition, Ξα can be expressed as follows:

Ξα(p) = max
q∈Rm

+

α

2

[∥∥∥∥ 1αz(p)
∥∥∥∥2 − ∥∥∥∥q − (p − 1

α
f(x)

)∥∥∥∥2
]
,

with its gradient given by:

∇Ξα(p)
.
= z(p)− (∇z(p) + αI) (q∗(p)− p) .

5.5.2 Mirror Potential Algorithm for Walrasian Economies

With the above lemma in hand, we can minimize Ξα using the mirror potential algorithm

(Algorithm 5). Note that like the mirror potential algorithm, the algorithm that arises is a

second-order price adjustment process. The following corollary is obtained by applying

Theorem 4.4.1 to the regularized primal gap as defined in Equation (5.12).
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Theorem 5.5.1 [Mirror potential algorithm for Walrasian equilibrium].

Consider a Walrasian economy (m, z) with an excess demand function z that is λ-Lipschitz-

continuous and β-Lipschitz-smooth, a 1-strongly-convex kernel function h, α ≥ 0, η ∈(
0, 1

2(2βαdiam(X )2+1+2λ)

]
, and x(0) ∈ X .

Consider the mirror potential algorithm (Algorithm 5) run with the regularized primal gap

Ξα as defined in Equation (5.12), the kernel function h, an arbitrary time horizon τ ∈ N, the

step size η, and the initial iterate x(0). The output sequence {x(t)}t satisfies the following

convergence bound to a stationary point of Ξα:

min
k=0,1,...,τ−1

max
x∈X
⟨∇Ξα(x

(k)),x(k) − x⟩ ≤ 2Ξα(x
(0))

τ

In addition, if x(τ)
best ∈ argminx(k):k=0,...,τ−1maxx∈X ⟨∇Ξα(x

(k)),x(k) − x⟩, then for some

τ ∈ O(1/ε), x(τ)
best is an ε-stationary point of Ξα.

Remark 5.5.1 [Walrasian equilibrium under the law of demand and supply].

As pointed out in Remark 4.4.1, when the excess demand is monotone, stationary points

of the regularized primal gap function are global solutions of the economy. In the case of

Walrasian economies, monotonicity of the excess demand is known as the law of supply

and demand (see, Definition 5.4.8). As such, to the best of our knowledge, Theorem 5.5.1

is the first polynomial-time guarantee for Walrasian equilibrium in general Walrasian

economies (i.e., beyond Arrow-Debreu economies), whose excess demand satisfies the law

of demand and supply.

Remark 5.5.2 [On Lipschitz-continuity and smoothness].

Recall that we can ensure that the excess demand is Lipschitz-continuous by Lemma 5.4.2,

assuming that the price elasticity of the excess demand is bounded. Nevertheless, to

the best of our knowledge, there are no known settings of the market parameters that

obtain Lipschitz-smoothness of the excess demand. That said, as the Lipschitz-continuity

and Lipschitz-smoothness of a function can be approximated from data, this assumption

remains realistic (see, for instance, (Wood and Zhang, 1996)).
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Having established very broad results for the convergence of price-adjustment processes for

Walrasian economies, in the next chapter, we provide an example of a Walrasian economy,

namely Fisher markets (Brainard et al., 2000), which have found a great deal of applications

in real-world resource allocation problems. This application will also demonstrate that in

more restricted Walrasian economies, using a more fine-grained analysis, the convergence

of tâtonnement processes can be guaranteed, complementing the results established in this

chapter.
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Chapter 6

Homothetic Fisher Markets

In this chapter, we turn our attention to identifying a large class of Walrasian economies for

which the mirror tâtonnement process converges to a Walrasian equilibrium. To this end, we

make strides towards analyzing the convergence of discrete-time tâtonnement in homothetic

Fisher markets, i.e., Walrasian economies with a fixed supply, and a demand generated

by utility-maximizing consumers whose utility functions are given by continuous and

homogeneous functions.1 An important concept in consumer theory is a buyer’s Hicksian

demand, i.e., consumptions that minimize expenditure while achieving a desired utility

level. We identify the maximum elasticity of the Hicksian demand, i.e., the maximum

percentage change in the Hicksian demand of any good w.r.t. the change in the price of

some other good, as an economic parameter sufficient to capture and explain a range of

convergent and non-convergent tâtonnement behaviors in a broad class of markets. In

particular, we prove the convergence of tâtonnement in homothetic Fisher markets with

bounded elasticity of Hicksian demand, i.e., Fisher markets in which consumers have

preferences represented by homogeneous utility functions for which the elasticity of their

Hicksian demand is bounded.

1We refer to Fisher markets that comprise buyers with a certain utility function by the name of the utility
function, e.g., we call a Fisher market that comprises buyers with Leontief utility functions a Leontief Fisher
market. We omit the “continuous” qualifier as Walrasian equilibrium is not guaranteed to exist when utilities
are not continuous.
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6.1 Background

6.1.1 Mirror Descent

Consider the optimization problem minx∈V f(x), where f : Rn → R is a differentiable

convex function and V is the feasible set of solutions. A standard method for solving this

problem is the mirror descent algorithm (Boyd et al., 2004):

x(t+ 1) = argmin
x∈V

{ℓf (x,x(t)) + γtdivh(x,x(t))} for t = 0, 1, 2, . . . (6.1)

x(0) ∈ Rn (6.2)

Here, γt > 0 is the step size at time t, ℓf (x,y) is the linear approximation of f at y,

that is ℓf (x,y) = f(y) + ∇f(y)T (x − y), and divh(x,x(t)) is the Bregman divergence

of a convex differentiable kernel function h(x) defined as divh(x,y) = h(x) − ℓh(x,y)

(Bregman, 1967). In particular, when h(x) = 1
2 ||x||

2
2, divh(x,y) = 1

2 ||x− y||22. In this case,

mirror descent reduces to projected gradient descent (Boyd et al., 2004). If instead the

kernel is the weighted entropy h(x) =
∑

i∈[n] (xi log(xi)− xi), the Bregman divergence

reduces to the generalized Kullback-Leibler (KL) divergence (Joyce, 2011):

divKL(x,y) =
∑
i∈[n]

[
xi log

(
xi
yi

)
− xi + yi

]
, (6.3)

which, when V = Rm++, yields the following simplified entropic descent update rule:

∀j ∈ [m] x
(t+1)
j = x

(t)
j exp

{
−Dxj

f(x(t))

γt

}
for t = 0, 1, 2, . . . (6.4)

x
(0)
j ∈ R++ (6.5)

A function f is said to be γ-Bregman-smooth (Cheung et al., 2018) w.r.t. a Bregman di-

vergence with kernel function h if f(x) ≤ ℓf (x,y) + γdivh(x,y). Birnbaum et al. (2011)

showed that if the objective function f(x) of a convex optimization problem is γ-Bregman

w.r.t. to some Bregman divergence divh, then mirror descent with Bregman divergence

divh converges to an optimal solution f(x∗) at a rate of O(1/t). We require a slightly modi-
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fied version of this theorem, introduced by Cheung et al. (2013), where it suffices for the

γ-Bregman-smoothness property to hold only for consecutive pairs of iterates.

Theorem 6.1.1 [Birnbaum et al. (2011),Cheung et al. (2013)].

Let {xt}t be the iterates generated by mirror descent with Bregman divergence divh. Sup-

pose f and h are convex, and for all t ∈ N and for some γ > 0, it holds that f(x(t+1)) ≤

ℓf (x
(t+1),x(t)) + γdivh(x

(t+1),x(t)). If x∗ is a minimizer of f , then the following holds for

mirror descent with fixed step size γ: for all t ∈ N, f(x(t))− f(x∗) ≤ γ/tdivh(x
∗,x(0)).

6.1.2 Consumer Theory Primer

LetX = Rm+ be a set of possible consumptions overm goods s.t. for any x ∈ Rm+ and j ∈ [m],

xj ≥ 0 represents the amount of good j ∈ [m] consumed by consumer (hereafter, buyer) i.

The preferences of buyer i over different consumptions of goods can be represented by a

preference relation ⪰i over X such that the buyer (resp. weakly) prefers a choice x ∈ X to

another choice y ∈ X iff x ≻i y (resp. x ⪰i y). A preference relation is said to be complete

iff for all x,y ∈ X , either x ⪰i y or y ⪰i x, or both. A preference relation is said to be

transitive if, for all x,y, z ∈ X , x ⪰i z whenever x ⪰i y and y ⪰i z. A preference relation

is said to be continuous if for any sequence {x(n),y(n)}n∈N+
⊂ X × X (x(n),y(n))→ (x,y)

and x(n) ⪰i y(n) for all n ∈ N+, it also holds that x ⪰i y. A preference relation ⪰i is said

to be locally non-satiated iff for all x ∈ X and ϵ > 0, there exists y ∈ Bϵ(x) such that

y ≻i x. A utility function ui : X → R+ assigns a positive real value2 to elements of X , i.e.,

to all possible consumptions. Every continuous utility function represents some complete,

transitive, and continuous preference relation ⪰i over goods s.t. if ui(x) ≥ ui(y) for two

bundles of goods x,y ∈ Rm, then x ⪰i y (Arrow et al., 1971).

In this paper, we consider the general class of homothetic preferences ⪰i s.t. for any

consumption x,y ∈ X and λ ∈ R+, x ⪰i y and y ⪰i x implies λx ⪰i λy and λy ⪰i λx,

respectively. A preference relation ⪰i is complete, transitive, continuous, and homothetic
2Without loss of generality, we assume that utility functions are positive real-valued functions, since any

real-valued function can be made positive real-valued by passing it through the monotonic transformation
x 7→ ex without affecting the underlying preference relation.
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iff it can be represented via a continuous and homogeneous utility function ui of arbitrary

degree (Arrow et al., 1971).3 We note that any homogeneous utility function ui represents

locally non-satiated preferences, since for all ϵ > 0 and x ∈ X , there exists an allocation

(1 + ε/∥x∥)x s.t. ui((1 + ε/∥x∥)x) = (1 + ε/∥x∥)ui(x) > ui(x), and [x− (1 + ε/∥x∥)x] ∈ Bε(x).

The class of homogeneous utility functions includes the well-known constant elasticity

of substitution (CES) utility function family, parameterized by a substitution parameter

−∞ ≤ ρi ≤ 1, and given by ui(xi) = ρi

√∑
j∈[m] vijx

ρi
ij with each utility function parame-

terized by the vector of valuations vi ∈ Rn+, where each vij quantifies the value of good j

to buyer i. CES utilities are said to be gross substitutes (resp. gross complements) CES

if ρi > 0 (ρi < 0). Linear utility functions are obtained when ρ is 1 (goods are perfect

substitutes), while Cobb-Douglas and Leontief utility functions are obtained when ρ→ 0

and ρ→ −∞ (goods are perfect complements), respectively:

Linear:

ui(xi) =
∑
j∈[m]

vijxij

Cobb-Doulas:

ui(xi) =
∏
j∈[m]

x
vij
ij

Leontief:

ui(xi) = min
j:vij ̸=0

xij
vij

Associated with any consumption x ∈ X are prices p ∈ Rm+ s.t. for all goods j ∈ [m],

pj ≥ 0 denotes the price of good j. A demand correspondence F : Rm+ → X takes as

input prices p ∈ Rm+ and outputs a set of consumptions F(p). If F is singleton-valued for

all p ∈ Rm+ , then it is called a demand function. Given a demand function f , we define

the elasticity ϵfi,xj
: Rm → R of output fi(x) w.r.t. the jth input xj evaluated at x = y as

ϵfi,xj
(y) = Dxj

fi(y)
yj

fi(y)
.

A good j ∈ [m] is said to be a substitute (resp. complement) w.r.t. a demand function

f for a good k ∈ [m] \ {j} if the demand fj(p) is increasing (resp. decreasing) in pk. If a

buyer’s demand fj(p) for good j is instead weakly increasing (resp. decreasing), good j is

said to be a weak substitute (resp. weak complement) for good k.

3Throughout this work, without loss of generality, we assume that complete, transitive, continuous, and
homothetic preference relations are represented via a homogeneous utility function of degree 1, since any
homogeneous utility function of degree k can be made homogeneous of degree 1 without affecting the
underlying preference relation by passing the utility function through the monotonic transformation x 7→ k

√
x.
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Next, we define the consumer functions (Mas-Colell et al., 1995; Jehle, 2001). The indirect

utility function vi : Rm+ × R+ → R+ takes as input prices p and a budget bi and outputs

the maximum utility the buyer can achieve at that prices within that budget, i.e., vi(p, bi) =

maxx∈X :p·x≤bi ui(x).

The Marshallian demand is a correspondence Di : Rm+ ×R+ ⇒ X that takes as input prices

p and a budget bi and outputs the utility-maximizing allocations of goods at that budget,

i.e., Di(p, bi) = argmaxx∈X :p·x≤bi ui(x).

The expenditure function ei : Rm+ × R+ → R+ takes as input prices p and a utility level

νi and outputs the minimum amount the buyer must spend to achieve that utility level at

those prices, i.e., ei(p, νi) = minx∈X :ui(x)≥νi p · x. If the utility function ui is continuous,

then the expenditure function is continuous and homogeneous of degree 1 in p and νi

jointly, non-decreasing in p, strictly increasing in νi, and concave in p.

The Hicksian demand is a correspondenceHi : Rm+ × R+ ⇒ R+ that takes as input prices

p and a utility level νi and outputs the cost-minimizing allocations of goods at those prices

and utility level, i.e.,Hi(p, νi) = argminx∈X :ui(x)≥νi p · x.

6.1.3 Fisher Markets

A Fisher market (n,m,u, b), denoted (u, b) when clear from context, consists of n traders

and m goods. A Fisher market consists of n buyers and m divisible goods (Brainard et al.,

2000). Each buyer i ∈ [n] has a budget bi ∈ R++ and a utility function ui : Rm+ → R. As

is standard in the literature, we assume there is one unit of each good, and one unit of

currency available in the market, i.e.
∑

i∈[n] bi = 1 (Nisan and Roughgarden, 2007). We

denote u = (u1, . . . , un), and b
.
= (b1, . . . , bn).

An allocation X is a map from goods to buyers, represented as a matrix s.t. xij ≥ 0 denotes

the amount of good j ∈ [m] allocated to buyer i ∈ [n]. Goods are assigned prices p ∈ Rm+ .
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When the buyers’ utility functions in a Fisher market are all of the same type, we qualify the

market by the name of the utility function, e.g., a linear Fisher market. A mixed CES Fisher

market is a Fisher market which comprises CES buyers with possibly different substitution

parameters. Considering properties of goods, rather than buyers, a (Fisher) market satisfies

gross substitutes (resp. gross complements) if all pairs of goods in the market are gross

substitutes (resp. gross complements). We define net substitute Fisher markets and net

complements Fisher markets similarly. We refer the reader to Figure 3.1a for a summary of

the relationships among various Fisher markets.

Definition 6.1.1 [Fisher Equilibrium].

A tuple (X∗,p∗) is said to be a Fisher equilibrium of a Fisher market (u, b) iff

(Utility maximization) Buyers maximize their utility constrained by their budget, i.e., ∀i ∈

[n],x∗
i ∈ Di(p∗, bi);

(Feasibility) ∀j ∈ [m],
∑

i∈[n] x
∗
ij ≤ 1

(Walras’ law) p∗ ·
(∑

i∈[n] x
∗
i − 1m

)

Any Fisher market (u, b) can be represented as a Walrasian economy. To this end, overload-

ing notation, define the aggregate demand correspondence D : Rm+ ⇒ Rm+ at prices p as

the sum of the Marshallian demand at p, given budgets b, i.e., D(p) =
∑

i∈[n]Di(p, bi). The

excess demand correspondence Z : Rm ⇒ Rm of a Fisher market (u, b), which takes as

input prices and outputs a set of excess demands at those prices, Any Fisher market (u, b)

can be represented as a Walrasian economy (m,Rm+ ,Z) where Z is defined as the difference

between the aggregate demand for and the supply of each good: i.e., Z(p) = D(p)− 1m

where 1m is the vector of ones of size m, and D(p) − 1m = {x − 1m | ∀x ∈ D(p)}. Note

that the the set of Fisher equilibrium prices of any Fisher market (u, b) is equal to the set of

Walrasian equilibria of (m,Z).
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6.2 Homothetic Fisher Markets

We now turn our attention to the computation of Fisher equilibrium in Fisher markets. We

will restrict ourselves to a large class of Fisher markets, namely homothetic Fisher markets.

Definition 6.2.1 [Homothetic Fisher Markets].

A homothetic Fisher market is a Fisher market (u, b) s.t. for each buyer i ∈ [n]:

(Continuity) ui is continuous;

(Homothetic preferences) ui is homogeneous, i.e., for all λ ≥ 0, λui(xi) = ui(λxi).

Suppose that (u, b) is a continuous, concave, and homogeneous Fisher market. The optimal

solutions (X∗,p∗) to the primal and dual of Eisenberg-Gale program constitute a Fisher

equilibrium of (u, b) (Devanur et al., 2002; Eisenberg and Gale, 1959; Jain et al., 2005):4

Primal

max
X∈Rn×m

+

∑
i∈[n]

bi log (ui(xi))

subject to
∑
i∈[n]

xij ≤ 1 ∀j ∈ [m]

Dual

min
p∈∆m

∑
j∈[m]

pj +
∑
i∈[n]

[bi log (vi(p, bi))− bi]

We now introduce a convex program which is equivalent to the Eisenberg-Gale convex

program, but whose optimal value differs from that of the Eisenberg-Gale convex program

by an additive constant. Before presenting our program, we present several preliminary

lemmas. All omitted proofs can be found in Section 7.2.

The next lemma establishes an important property of the indirect utility and expenditure

functions in CCH Fisher markets that we heavily exploit in this work, namely that the

derivative of the indirect utility function with respect to bi—the bang-per-buck—is constant

across all budget levels. Likewise, the derivative of the expenditure function with respect to

νi—the buck-per-bang—is constant across all utility levels. In other words, both functions

effectively depend only on prices. Not only are the bang-per-buck and the buck-per-bang

4The dual as presented here was formulated by Goktas et al. (2022b).
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constant, they equal vi(p, 1) and ei(p, 1), respectively, namely their values at exactly one

unit of budget and one unit of (indirect) utility.

An important consequence of this lemma is that, by picking prices that maximize a buyer’s

bang-per-buck, we not only maximize their bang-per-buck at all budget levels, but we

further maximize their total indirect utility, given their known budget. In particular, given

prices p∗ that maximize a buyer’s bang-per-buck at budget level 1, we can easily calculate

the buyer’s total (indirect) utility at budget bi by simply multiplying their bang-per-buck

by bi: i.e., vi(p∗, bi) = bivi(p
∗, 1). Here, we see quite explicitly the homogeneity assumption

at work.

Analogously, by picking prices that maximize a buyer’s buck-per-bang, we not only max-

imize their buck-per-bang at all utility levels, but we further maximize the buyer’s total

expenditure, given their unknown optimal utility level. As above, given prices p∗ that

minimize a buyer’s buck-per-bang at utility level 1, we can easily calculate the buyer’s

total expenditure at utility level νi by simply multiplying their buck-per-bang by νi: i.e.,

ei(p
∗, νi) = νiei(p

∗, 1).

In sum, solving for optimal prices at any budget level, or analogously at any utility level,

requires only a single optimization, in which we solve for optimal prices at budget level, or

utility level, 1.

Lemma 6.2.1.

If ui is continuous and homogeneous of degree 1, then vi(p, bi) and ei(p, νi) are differen-

tiable in bi and νi, resp. Further, Dbivi(p, bi) = {vi(p, 1)} and Dνiei(p, νi) = {ei(p, 1)}.

The next lemma provides further insight into why CCH Fisher markets are easier to solve

than non-CCH Fisher markets. The lemma states that the bang-per-buck, i.e., the marginal

utility of an additional unit of budget, is equal to the inverse of its buck-per-bang, i.e.,

the marginal cost of an additional unit of utility. Consequently, by setting prices so as to

minimize the buck-per-bang of buyers, we can also maximize their bang-per-buck. Since

the buck-per-bang is a function of prices only, and not of prices and allocations together, this
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lemma effectively decouples the calculation of equilibrium prices from the calculation of

equilibrium allocations, which greatly simplifies the problem of computing Fisher equilibria

in CCH Fisher markets.

Corollary 6.2.1.

If buyer i’s utility function ui is CCH, then

1

ei(p, 1)
=

1
∂ei(p,νi)
∂νi

=
∂vi(p, bi)

∂bi
= vi(p, 1) . (6.6)

We can now present our characterization of the dual of the Eisenberg-Gale program via

expenditure functions. While Devanur et al. (Devanur et al., 2016) provided a method to

construct a similar program to that given in Theorem 6.2.1 for specific utility functions,

their method does not apply to arbitrary CCH utility functions. The proof of this theorem

can be found in Section 7.2.

Theorem 6.2.1 [New Convex Program for Homothetic Fisher Markets].

The optimal solutions (X∗,p∗) to the following primal and dual convex programs corre-

spond to Fisher equilibrium allocations and prices, respectively, of the homothetic Fisher

market (u, b):

Primal

max
X∈Rn×m

+

∑
i∈[n]

[
bi log ui

(
xi
bi

)
+ bi

]

subject to
∑
i∈[n]

xij ≤ 1 ∀j ∈ [m]

Dual

min
p∈∆m

ψ(p)
.
=
∑
j∈[m]

pj −
∑
i∈[n]

bi log (ei(p, 1))

Our new convex program for CCH Fisher markets makes plain the duality structure

between utility functions and expenditure functions that is used to compute “shadow”

prices for allocations. In particular, ei(p, νi) is the Fenchel conjugate of the indicator function

χ{x:ui(xi)≥νi}, meaning the utility levels and expenditures are dual (in a colloquial sense)

to one another. Therefore, equilibrium utility levels can be determined from equilibrium

expenditures, and vice-versa, which implies that allocations and prices can likewise be

derived from one another through this duality structure.5

5A more in-depth analysis of this duality structure can be found in Blume (Blume, 2017).
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Since the objective function of the primal in Theorem 6.2.1 is in general non-concave

(i.e., if utilities u are not concave), strong duality need not hold; however, the dual is

still guaranteed to be convex (Boyd et al., 2004). This observation suggests that even if

the problem of computing Fisher equilibrium allocations is non-concave, the problem of

computing Fisher equilibrium prices can still be convex. Additionally, since this convex

program differs from the Eisenberg-Gale program by an additive constant, we obtain as a

corollary that solutions to the Einseberg-Gale program also correspond to Fisher equilibria

in all homothetic Fisher markets, including those in which the buyers’ utility functions are

non-concave.

6.3 Convex Potential Markets

An interesting property of this convex program is that its dual expresses Fisher equilibrium

prices via expenditure functions, and just like the Eisenberg-Gale program’s dual objective

(Cheung et al., 2013; Devanur et al., 2008), the gradient of its objective ψ(p) at any price p

is equal to the negative excess demand in the market at those prices.

Cheung et al. (2013) showed via the Lagrangian of the Eisenberg-Gale program, i.e., without

constructing the precise dual, that the subdifferential of the dual of the Eisenberg-Gale

program is equal to the negative excess demand in the associated market, which implies

that mirror descent equivalent to a subset of tâtonnement rules. In this section, we use a

generalization of Shephard’s lemma to prove that the subdifferential of the dual of our

new convex program is equal to the negative excess demand in the associated market. Our

proof also applies to the dual of the Eisenberg-Gale program, since the two duals differ

only by a constant factor.

Shephard’s lemma tells us that the rate of change in expenditure with respect to prices,

evaluated at prices p and utility level νi, is equal to the Hicksian demand at prices p and

utility level νi. Alternatively, the partial derivative of the expenditure function with respect

to the price pj of good j at utility level νi is simply the share of the total expenditure
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allocated to j divided by the price of j, which is exactly the Hicksian demand for j at utility

level νi.

While Shephard’s lemma is applicable to utility functions with singleton-valued Hicksian

demand (i.e., strictly concave utility functions), we require a generalization of Shephard’s

lemma that applies to utility functions that could have set-valued Hicksian demand. An

early proof of this generalized lemma was given by Tanaka (2008) in a discussion paper;

a more modern perspective can be found in a recent survey by Blume (2017). For com-

pleteness, we also provide a new, simple proof of this result via Danskin’s theorem (for

subdifferentials) in (Danskin, 1966) Section 7.2.

Lemma 6.3.1 [Shephard’s lemma, generalized for set-valued Hicksian demand (Blume,

2017; Shephard, 2015; Tanaka, 2008)].

Let ei(p, νi) be the expenditure function of buyer i and hi(p, νi) be the Hicksian demand

set of buyer i. The subdifferential Dpei(p, νi) is the Hicksian demand at prices p and utility

level νi, i.e., Dpei(p, νi) = hi(p, νi).

The next lemma plays an essential role in the proof that the subdifferential of the dual of

our convex program is equal to the negative excess demand. Just as Shephard’s Lemma

related the expenditure function to Hicksian demand via (sub)gradients, this lemma re-

lates the expenditure function to Marshallian demand via (sub)gradients. One way to

understand this relationship is in terms of Marshallian consumer surplus, the area under

the Marshallian demand curve, i.e., the integral of Marshallian demand with respect to

prices.6 Specifically, by applying the fundamental theorem of calculus to the left-hand side

of Lemma 6.3.2, we see that the Marshallian consumer surplus equals bi log
(
∂ei(p,νi)
∂νi

)
. The

key takeaway is thus that any objective function we might seek to optimize that includes a

buyer’s Marshallian consumer surplus is thus optimizing their Marshallian demand, so that

6We note that the definition of Marshallian consumer surplus for multiple goods requires great care and
falls outside the scope of this paper. More information on consumer surplus can be found in Levin (2004), and
Vives (1987).
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optimizing this objective yields a utility-maximizing allocation for the buyer, constrained

by their budget.

Lemma 6.3.2.

If buyer i’s utility function ui is continuous and homogeneous, then

Dp

(
bi log

(
∂ei(p,νi)
∂νi

))
= di(p, bi).

Remark 6.3.1.

Lemma 6.3.2 makes the dual of our convex program easy to interpret, and thus sheds

light on the dual of the Eisenberg-Gale program. Specifically, we can interpret the dual as

specifying prices that minimize the distance between the sellers’ surplus and the buyers’

Marshallian surplus. The left hand term is simply the sellers’ surplus, and by Lemma 6.3.2,

the right hand term can be seen as the buyers’ total Marshallian surplus.

Remark 6.3.2.

The lemmas we have proven in this section and the last provide a possible explanation as

to why no primal-dual type convex program is known that solves Fisher markets when

buyers have non-homogeneous utility functions, in which the primal describes optimal

allocations while the dual describes equilibrium prices. By the homogeneity assumption,

a CCH buyer can increase their utility level (resp. decrease their spending) by c% by

increasing their budget (resp. decreasing their desired utility level) by c% (Lemma 7.2.1).

This observation implies that the marginal expense of additional utility, i.e., “bang-per-

buck”, and the marginal utility of additional budget, i.e., “buck-per-bang”, are constant

(Lemma 6.2.1). Additionally, optimizing prices to maximize buyers’ “bang-per-buck” is

equivalent to optimizing prices to minimize their “buck-per-bang” (Corollary 6.2.1). Further,

optimizing prices to minimize their “buck-per-bang” is equivalent to maximizing their

utilities constrained by their budgets (Lemma 6.3.2). Thus, the equilibrium prices computed

by the dual of our program, which optimize the buyers’ buck-per-bang, simultaneously

optimize their utilities constrained by their budgets. In particular, equilibrium prices can

be computed without reference to equilibrium allocations (Corollary 6.2.1 + Lemma 6.3.2).

173



In other words, assuming homogeneity, the computation of the equilibrium allocations and

prices can be isolated into separate primal and dual problems.

Next, we show that the subdifferential of the dual of our convex program is equal to the

negative excess demand in the associated market.

Theorem 6.3.1.

Given any homothetic Fisher market (u, b), the subdifferential of the dual of the program

in Theorem 6.2.1 at any price p is equal to the negative excess demand in (u, b) at price p:

i.e., Dpψ(p) = −Z(p).

Cheung et al. (2013) define a class of markets called convex potential function (CPF)

markets. A market is a CPF market, if there exists a convex potential function φ such

that Dpφ(p) = −z(p). They then prove that Fisher markets are CPF markets by showing,

through the Lagrangian of the Eisenberg-Gale program, that its dual is a convex potential

function (Cheung et al., 2013). Likewise, Theorem 6.3.1 implies the following:

Corollary 6.3.1.

All homothetic Fisher markets are CPF markets.

Proof

A convex potential function ϕ : Rm → R for any CCH Fisher market (u, b) is given

by:

ψ(p) =
∑
j∈[m]

pj −
∑
i∈[n]

bi log

(
∂ei(p, νi)

∂νi

)
(6.7)

6.4 Market Parameters

An important consequence of the fact that implies that mirror descent on φ over the

positive ortanth is equivalent to tâtonnement in all homothetic Fisher markets. Using

this equivalence, we can pick a particular kernel function h, and then potentially use

Theorem 6.1.1 to establish convergence rates for tâtonnement.

174



Unfortunately, tâtonnement does not converge to equilibrium prices in all homothetic Fisher

markets, e.g., linear Fisher markets (Cole and Tao, 2019), which suggests the need for

additional restrictions on the class of homothetic Fisher markets. Goktas et al. (2022b)

suggest the maximum absolute value of the Marshallian price demand elasticity, i.e.,

c = maxj,k,imax(p,b)∈∆m×∆n×[n]

∥∥ϵdij ,pk(p, bi)∥∥, as a possible market parameter to use to

establish a convergence rate of O((1+c)/T). However, Cole and Fleischer’s [2008] results

suggest that it is unlikely that Marshallian demand elasticity could be enough, since the

proof techniques used in work that makes this assumption require one to quantify the

direction of the change in demand as a function of the change in the prices of the other

goods, and hence only apply when one assumes WGS or WGC (Cole and Fleischer, 2008).

One of the main contributions of this paper is the observation that the maximum absolute

value of the price elasticity of Hicksian demand in a homothetic Fisher market is sufficient

to analyze the convergence of tâtonnement. To this end, in this section, we anaylyze Hicksian

demand price elasticity, exposit some of its properties in homothetic markets, and argue

why it is a natural parameter to consider in the analysis of tâtonnement.

We first note that for Leontief utilities, the Hicksian cross-price elasticity of demand is equal

to 0, while for linear utilities the Hicksian cross-price elasticity of demand is, by convention,

∞.7 For Cobb-Douglas utilities, the Hicksian cross-price elasticity of demand is strictly

positive and upper bounded by 1, but it is not the same for all pairs of goods. Note that

the behavior of the Hicksian cross-price elasticity of demand is radically different than

that of the Marshallian cross-price elasticity of demand, for which the elasticities of linear,

Cobb-Douglas, and Leontief utilities are respectively given as∞, 0, and −∞. A taxonomy

of utility classes as a function of price elasticity of demand (both Marshallian and Hicksian)

is shown in Figure 3.1b (Section 3.3).

7The limit of Hicksian price elasticity of demand as ρ→ 1 is not well defined, i.e., if ρ→ 1− the limit is +∞,
while if ρ→ 1+ the limit is −∞. However, for linear utilities, as the Hicksian demand for a good can only go
up when the price of another good goes up, we set the elasticity of Hicksian price elasticity of demand for
linear utilities to be +∞, by convention. We refer the reader to Ramskov and Munksgaard (2001) for a primer
on elasticity of demand.
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We start our analysis with following lemma, which shows that the Hicksian price elasticity

of demand is constant across all utility levels in homothetic Fisher markets. This property

implies that the Hicksian demand price elasticity at one unit of utility provides sufficient

information about the market’s reactivity to changes in prices, even without any informa-

tion about the buyers’ utility levels. This information is crucial when trying to bound the

changes in Hicksian demand from one iteration of tâtonnement to another, since buyers’

utilities can change.8

Lemma 6.4.1.

For any Hicksian demand hi associated with a homogeneous utility function ui, for all

j, k ∈ [m],p ∈ Rm+ , νi ∈ R+, it holds that ϵhij ,pk(p, νi) = ϵhij ,pk(p, 1) = 1.

With the above lemma in hand, we now explain why the Hicksian demand price elasticity9

is a better market parameter by which to analyze the convergence of tâtonnement than the

Marshallian demand price elasticity. Cheung et al. (2013); Cheung (2014) use the dual of the

Eisenberg-Gale program as a potential to measure the progress that tâtonnement makes at

each step, for (nested) CES and Leontief utilities. Under these functional forms, the authors

are able to explain a change in the value of the buyers’ indirect utilities as a function a

change in prices, based on which they bound the change in the second term of the dual∑
i∈[n] bi log(vi(p, bi))− bi from one time period to the next. Using this bound, they show

that tâtonnement makes steady progress towards equilibrium.

However, in general homothetic Fisher markets, knowing how much the Marshallian

demand for each good changes from one iteration of tâtonnement to another does not tell

us how much the buyers’ utilities change. More concretely, suppose that the Marshallian

demand of a buyer i has changed by an additive vector ∆di from time t to time t+1, then the

difference in indirect utilities from one period to another is given by ui(d
(t+1)
i )− ui(d

(t)
i ) =

ui(d
(t)
i +∆di)− ui(d

(t)
i ). Without additional information about the utility functions, e.g.,

8We include all omitted results and proofs in Section 7.2.
9Going forward we refer to the Hicksian price elasticity of demand, as simply Hicksian demand elasticity,

because Hicksian price elasticity of demand w.r.t. utility level is always 1.
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Lipschitz continuity, it is impossible to bound this difference, because utilities can change

by an unbounded amount from one period to another. Hence, even if the Marshallian price

elasticity of demand and the changes in prices from one period to another were known, it

would only allow us to bound the difference in demands, and not the difference in indirect

utilities. To get around this difficulty, one could consider making an assumption about

the boundedness of the indirect utility function’s price elasticity, or the utility function’s

Lipschitz-continuity, but such assumptions would not be economically justified, since

utility functions are merely representations of preference orderings without any inherent

meaning of their own.

We can circumvent this issue by instead looking at the dual of the convex program in

Theorem 6.2.1. In this dual, the indirect utility term is replaced by the expenditure function.

The advantage of this formulation is that if one knows the amount by which prices change

from one iteration to the next, as well as the Hicksian demand elasticity, then we can easily

bound the change in spending from one period to another.

The following lemma is crucial to proving the convergence of tâtonnement. This lemma

allows us to bound the changes in buyer spending across all time periods, thereby allowing

us to obtain a global convergence rate. In particular, it shows that the change in spending

between two consecutive iterations of tâtonnement can be bounded as a function of the

prices and the Hicksian demand elasticity.

More formally, suppose that we would like to bound the percentage change in expenditure

at one unit of utility from one iteration to another, i.e., ei(p
(t+1),1)−ei(p(t),1)
ei(p(t),1) , using a first order

Taylor expansion of ei(p(t) +∆p, 1) around p(t). By Taylor’s theorem (Graves, 1927), we

have: ei(p(t) +∆p, 1) = ei(p
(t), 1)+

〈
∇pei(p

(t), 1),∆p
〉
+ 1/2

〈
∇2

pei(p
(t) + c∆p, 1)∆p,∆p

〉
for some c ∈ (0, 1). Re-organizing terms around, we get ei(p(t+1), 1) − ei(p

(t), 1) =〈
∇pei(p

(t), 1),∆p
〉
+ 1/2

〈
∇2

pei(p
(t) + c∆p, 1)∆p,∆p

〉
. Dividing both sides by ei(p

(t), 1)

177



we obtain: 〈
∇pei(p

(t), 1),∆p
〉
+ 1/2

〈
∇2

pei(p
(t) + c∆p, 1)∆p,∆p

〉
ei(p(t), 1)

We can now apply Shephard’s lemma (Shephard, 2015), a corollary of the envelope theorem

(Afriat, 1971; Milgrom and Segal, 2002), to the numerator, which allows us to conclude that

for all buyers i ∈ [n], ∇pei(p, νi) = hi(p, νi). Next, using the definition of the expenditure

function in the denominator, we obtain the following:

=

〈
hi(p

(t), 1),∆p
〉〈

hi(p(t), 1),p(t)
〉 + 1/2

〈
∇2

pei(p
(t) + c∆p, 1)∆p,∆p

〉
ei(p(t), 1)

(6.8)

If the change in prices is bounded, and the Hicksian demand elasticity is known, then one

can bound the first term in Equation (6.8) with ease. It remains to be seen if the second term

can be bounded. The following lemma provides an affirmative answer to that question. In

particular, we show that the second-order error term in the Taylor approximation above

can be bounded as a function of the maximum absolute value of the Hicksian demand

elasticity. We note that in the following lemma, by Lemma 7.2.9, the Marshallian demand

is unique, because the Hicksian demand is a singleton for bounded elasticity of Hicksian

demand.

Lemma 6.4.2.

Fix i ∈ [n] and t ∈ N+ and let ∆p = p(t+1)−p(t). Suppose that |∆pj |
p
(t)
j

≤ 1
4 , then for all buyers

i ∈ [n], and for some c ∈ (0, 1), it holds that:∣∣∣∣∣bi2
〈
∇2

pei(p
(t) + c∆p, 1)∆p,∆p

〉
ei(p(t), 1)

∣∣∣∣∣ ≤ 5ϵ

6

∑
j

(∆pj)
2

p
(t)
j

dij(p
(t) + c∆p, bi) , (6.9)

where ϵ .= maxp∈∆m,j,k∈[m]

∣∣ϵhij ,pk(p, 1)
∣∣.

Proof of Lemma 6.4.2

By Shephard’s lemma (Shephard, 2015) (Lemma 6.3.1, Section 7.2), it holds that〈
∇2

pei(p
(t) + c∆p, 1)∆p,∆p

〉
=
〈
∇phi(p

(t) + c∆p, 1)∆p,∆p
〉
.
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∣∣∣∣∣bi2
〈
∇2

pei(p
(t) + c∆p, 1)∆p,∆p

〉〈
hti,p

(t)
〉 ∣∣∣∣∣

=

∣∣∣∣∣bi2
〈
∇phi(p

(t) + c∆p, 1)∆p,∆p
〉〈

hti,p
(t)
〉 ∣∣∣∣∣ (Shephard’s Lemma)

≤ bi
2

∑
j,k

∣∣∣∆pj∣∣∣ ∣∣Dpkhij(p(t) + c∆p, 1)
∣∣ |∆pk|〈

hti,p
(t)
〉

=
bi
2

∑
j,k

∣∣∣∆pj∣∣∣√∣∣Dpkhij(p(t) + c∆p, 1)
∣∣√∣∣Dpkhij(p(t) + c∆p, 1)

∣∣ |∆pk|〈
hti,p

(t)
〉

=
bi
2

∑
j,k

∣∣∣∆pj∣∣∣√∣∣Dpjhik(p(t) + c∆p, 1)
∣∣√∣∣Dpkhij(p(t) + c∆p, 1)

∣∣ |∆pk|〈
hti,p

(t)
〉 (6.10)

where the last was obtained from the symmetry of ∇2
pei(p, νi) = ∇2

pei(p, νi)
T for all

i ∈ [n],p ∈ Rm+ , νi ∈ R+ (Mas-Colell et al., 1995), which combined with Shephard’s

lemma gives us ∇phi(p, νi) = ∇phi(p, νi)
T , i.e., for all j, k ∈ [m], Dpjhik(p, νi) =

Dpkhij(p, νi).

Define the Hicksian demand elasticity of buyer i for good j w.r.t. the price

of good k as ϵhij ,pk(p, νi) = Dpkhij(p, νi)
pk

hij(p,νi)
. Since utility functions are

homogeneous, by Lemma 6.4.1 we have for all νi ∈ R+, ϵhij ,pk(p, νi) =

Dpkhij(p, νi)
pk

hij(p,νi)
= Dpkhij(p, 1)

pk
hij(p,1)

. Re-organizing expressions, we get

Dpkhij(p, 1) = ϵhij ,pk(p, 1)
hij(p,1)
pk

. Going back to Equation (6.10), we get:

=
bi
2

∑
j,k

∣∣∆pj∣∣
√∣∣∣∣ϵhik,pj

(p(t) + c∆p, 1)hik(p
(t)+c∆p,1)

p
(t)
j +c∆pj

∣∣∣∣
√∣∣∣∣ϵhij ,pk

(p(t) + c∆p, 1)
hij(p

(t)+c∆p,1)

p
(t)
k

+c∆p
k

∣∣∣∣ |∆pk|
⟨hti,p(t)⟩

=
bi
2

∑
j,k

∣∣∆pj∣∣√∣∣∣ϵhik,pj
(p(t) + c∆p, 1)

∣∣∣ hik(p(t)+c∆p,1)

p
(t)
j +c∆pj

√∣∣ϵhij ,pk
(p(t) + c∆p, 1)

∣∣ hij(p(t)+c∆p,1)

p
(t)
k

+c∆p
k

|∆pk|

⟨hi(p(t), 1),p(t)⟩

Letting ϵ = maxp∈Rm
+ ,νi∈R+,j,k∈[m]

∣∣ϵhij ,pk(p, νi)
∣∣. Note that since utility functions are

homogeneous, by Lemma 6.4.1 we have ϵ = maxp∈Rm
+ ,νi∈R+,j,k∈[m]

∣∣ϵhij ,pk(p, νi)
∣∣ =

maxp∈Rm
+ ,j,k∈[m]

∣∣ϵhij ,pk(p, 1)
∣∣, which gives us:

≤ ϵbi
2

∑
j,k

∣∣∣∆pj∣∣∣√hik(p(t)+c∆p,1)

p
(t)
j +c∆pj

√
hij(p(t)+c∆p,1)

p
(t)
k +c∆pk

|∆pk|〈
hi(p(t), 1),p(t)

〉
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Since for all j ∈ [m], |∆pj |
pj
≤ 1

4 , we have that for all j ∈ [m] and for all c ∈ [0, 1],

p
(t)
j + c∆pj ≥ 3

4p
(t)
j , which gives:

≤ ϵbi
2

∑
j,k

∣∣∣∆pj∣∣∣√hik(p(t)+c∆p,1)
3

4
p
(t)
j

√
hij(p(t)+c∆p,1)

3

4
p
(t)
k

|∆pk|〈
hi(p(t), 1),p(t)

〉
=

2ϵbi
3

∑
j,k

∣∣∣∆pj∣∣∣√hij(p(t)+c∆p,1)

p
(t)
j

√
hik(p(t)+c∆p,1)

p
(t)
k

|∆pk|〈
hi(p(t), 1),p(t)

〉
=

2ϵbi
3

∑
j,k∈[m]

√
|∆pj|2
p
(t)
j

hij(p(t) + c∆p, 1)hik(p(t) + c∆p, 1)
|∆pk|

2

p
(t)
k〈

hi(p(t), 1),p(t)
〉

Applying the AM-GM inequality, i.e., for all x, y ∈ R+, x+y2 ≥
√
xy, to the sum inside

the numerator above, we obtain:

≤ 2ϵbi
3

∑
j,k∈[m]

1/2

(
|∆pj|2
p
(t)
j

hij(p
(t) + c∆p, 1) + hik(p

(t) + c∆p, 1) |∆pk|
2

p
(t)
k

)
〈
hi(p(t), 1),p(t)

〉
≤ 2ϵbi

3

∑
j
(∆pj)

2

p
(t)
j

hij(p
(t) + c∆p, 1)〈

hi(p(t), 1),p(t)
〉

Since for all j ∈ [m], |∆pj |
p
(t)
j

≤ 1
4 , we have for all c ∈ [0, 1] that 4

5

∑
j hij(p

(t), 1)(p
(t)
j +

c∆pj) ≤
∑

j hij(p
(t), 1)p

(t)
j :

≤ 2ϵbi
3

∑
j
(∆pj)

2

p
(t)
j

hij(p
(t) + c∆p, 1)

4
5

∑
j hij(p

(t), 1)(p
(t)
j + c∆pj)

=
5ϵbi
6

∑
j
(∆pj)

2

p
(t)
j

hij(p
(t) + c∆p, 1)∑

j hij(p
(t), 1)(p

(t)
j + c∆pj)

≤ 5ϵbi
6

∑
j
(∆pj)

2

p
(t)
j

hij(p
(t) + c∆p, 1)∑

j hij(p
(t) + c∆p, 1)(p

(t)
j + c∆pj)

(Corollary 7.2.1, Section 7.2)

=
5ϵ

6

∑
j

(∆pj)
2

p
(t)
j

dij(p
(t) + c∆p, bi) (Lemma 7.2.9, Section 7.2)
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Because we can bound the change in the expenditure function from one iteration of tâ-

tonnement to the next, the Hicksian price elasticity of demand is a better tool with which

to analyze the convergence of tâtonnement than Marshallian price elasticity of demand.

Additionally, as shown previously by Cheung et al. (2013) (Lemma 7.2.4, Section 7.2), we

can further upper bound the price terms in Lemma 6.4.2 by the KL divergence between

the two prices In light of Theorem 6.1.1, this result suggests that running mirror descent

with KL divergence as the Bregman divergence on the dual of the convex program in

Theorem 6.2.1 could result in a tâtonnement update rule that converges to a Walrasian

equilibrium.

6.5 Convergence Bounds for Entropic Tâtonnement

In this section, we analyze the rate of convergence of entropic tâtonnement, which corre-

sponds to the tâtonnement process given by mirror descent with weighted entropy as the

kernel function, i.e., entropic descent. This particular update rule reduces to Equations (6.4)

to (6.5), and has been the focus of previous work (Cheung et al., 2013). We provide a sketch

of the proof used to obtain our convergence rate in this section. The omitted lemmas and

proofs can be found in Appendix 7.2.

At a high level, our proof follows Cheung et al.’s [2013] proof technique for Leontief

Fisher markets (Cheung et al., 2013), although we encounter different lower-level technical

challenges in generalizing to homothetic markets. This proof technique works as follows.

First, we prove that under certain assumptions, the condition required by Theorem 6.1.1

holds when f is the convex potential function for homothetic Fisher markets, i.e., f = ψ.

For these assumptions to be valid, we need to set γ to be greater than a quadratic function

of the maximum absolute value of the price elasticity of the Hicksian demand and the

maximum Marshallian demand, for all goods throughout the tâtonnment process. Further,

since γ needs to be set at the outset, we need to upper bound γ. To do so, we derive a bound

on the maximum demand for any good during tâtonnement in all homothetic Fisher markets,
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which in turn allows us to derive an upper bound on γ. Finally, we use Theorem 6.1.1 to

obtain the convergence rate of O(1+ϵ2/t).

The following lemma derives the conditions under which the antecedent of Theorem 6.1.1

holds for entropic tâtonnement.

Lemma 6.5.1.

Consider a homothetic Fisher market (u, b) and let ϵ = maxp∈∆m,j,k∈[m]

∣∣ϵhij ,pk(p, 1)
∣∣. Then,

the following holds for entropic tâtonnement when run on (u, b): for all t ∈ N,

ψ(p(t+1)) ≤ ℓψ(p(t+1),p(t)) + γdivKL(p
(t+1),p(t)) ,

where γ =

(
1 + max

j∈[m]

{ ∑
i∈[n]

max
t∈N+

vi(p
(t), bi) max

p∈∆m

hij(p, 1)

})(
6 + 85ϵ

12 + 25ϵ2

72

)
.

Proof of Lemma 6.5.1

ψ(p(t+1))− ℓψ(p
(t+1),p(t))

= ψ(p(t+1))− ψ(p(t)) + z(p(t)) ·
(
p(t+1) − p(t)

)
=
∑
j∈[m]

(
p
(t)
j +∆pj

)
−
∑
i∈[n]

bi log
(
ei(p

(t+1), 1)
)
−
∑
j∈[m]

p
(t)
j +

∑
i∈[n]

bi log
(
ei(p

(t), 1)
)
+
∑
j∈[m]

zj(p
(t))∆pj

=
∑
j∈[m]

(
p
(t)
j +∆pj

)
−
∑
i∈[n]

bi log
(
ei(p

(t+1), 1)
)
−
∑
j∈[m]

p
(t)
j +

∑
i∈[n]

bi log
(
ei(p

(t), 1)
)
+
∑
j∈[m]

(q
(t)
j − 1)∆pj

=
∑
j∈[m]

∆pjq
(t)
j −

∑
i∈[n]

bi log
(
ei(p

(t+1), 1)
)
+
∑
i∈[n]

bi log
(
ei(p

(t), 1)
)

=
〈
∆p, q(t)

〉
+
∑
i∈[n]

bi log

(
ei(p

(t), 1)

ei(p(t+1), 1)

)

=
〈
∆p, q(t)

〉
+
∑
i∈[n]

bi log

(
ei(p

(t), 1)

ei(p(t), 1) + ei(p(t+1), 1)− ei(p(t), 1)

)

=
〈
∆p, q(t)

〉
+
∑
i∈[n]

bi log

(
1− ei(p

(t+1), 1)− ei(p
(t), 1)

ei(p(t), 1)

(
1 +

ei(p
(t+1), 1)− ei(p

(t), 1)

ei(p(t), 1)

)−1
)
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where the last line is obtained by simply noting that ∀a, b ∈ R, a
a+b = 1− b

a(1 +
b
a)

−1.
Using Lemma 7.2.12, we then obtain:

ψ(p(t+1))− ℓψ(p
(t+1),p(t))

≤
〈
∆p, q(t)

〉
+
∑
i∈[n]

(4

3
+

20ϵ

27

)∑
l∈[m]

d
(t)
il

p
(t)
l

(∆pl)
2+

(
5ϵ

6
+
25ϵ2

324

)∑
l∈[m]

dil(p
(t)+c∆p, bi)

p
(t)
l

(∆pl)
2−
〈
d
(t)
i ,∆p

〉
=
〈
∆p, q(t)

〉
+

(
4

3
+

20ϵ

27

)∑
l∈[m]

q
(t)
l

p
(t)
l

(∆pl)
2 +

(
5ϵ

6
+

25ϵ2

324

) ∑
l∈[m]

ql(p
(t) + c∆p, b)

p
(t)
l

(∆pl)
2 −

〈
q(t),∆p

〉

=

(
4

3
+

20ϵ

27

) ∑
l∈[m]

q
(t)
l

p
(t)
l

(∆pl)
2 +

(
5ϵ

6
+

25ϵ2

324

) ∑
l∈[m]

ql(p
(t) + c∆p, b)

p
(t)
l

(∆pl)
2

≤
(
4

3
+
20ϵ

27

)∑
l∈[m]

q
(t)
l

(
9

2

)
divKL(p

(t)
j +∆pj , p

(t)
j )

+

(
5ϵ

6
+
25ϵ2

324

)∑
l∈[m]

ql(p
(t)+ c∆p, b)

(
9

2

)
divKL(p

(t)
j +∆pj , p

(t)
j )

where the last line follows from Lemma 7.2.4. Continuing,

=

(
6 +

10ϵ

3

) ∑
l∈[m]

q
(t)
l divKL(p

(t)
l +∆pl, p

(t)
l ) (6.11)

+

(
15ϵ

4
+

25ϵ2

72

) ∑
l∈[m]

ql(p
(t) + c∆p, b)divKL(p

(t)
l +∆pl, p

(t)
l )

≤ max
j∈[m],
t∈N+

{
q
(t)
j

}(
6+

10ϵ

3

)∑
l∈[m]

divKL(p
(t)
l +∆pl, p

(t)
l )+

max
j∈[m],
t∈N+,
c∈[0,1]

{
qj(p

(t)+ c∆p)
}(15ϵ

4
+
25ϵ2

72

)∑
l∈[m]

divKL(p
(t)
l +∆pl, p

(t)
l )

≤ max
j∈[m],t∈N+,c∈[0,1]

{
qj(p

(t) + c∆p)
}(

6 +
85ϵ

12
+

25ϵ2

72

)
divKL(p

(t) +∆p,p(t)) (6.12)

By Lemma 7.2.9, we can rewrite the aggregate demand for all goods j ∈ [m], as

follows:

qj(p
(t) + c∆p) =

∑
i∈[n]

dij((1− c)p(t) + cp(t+1), bi)

=
∑
i∈[n]

hij((1− c)p(t) + cp(t+1), 1)bi

ei((1− c)p(t) + cp(t+1), 1)

Now, by Danskin’s maximum theorem (Danskin, 1966), we know that the expendi-

ture function is concave in prices, that is, for all c ∈ [0, 1], we have (1− c)ei(p(t), 1) +
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cei(p
(t+1), 1) ≤ ei((1− c)p(t) + cp(t+1), 1). Hence, continuing we have for all j ∈ [m]:

qj(p
(t) + c∆p) =

∑
i∈[n]

hij((1− c)p(t) + cp(t+1), 1)bi

ei((1− c)p(t) + cp(t+1), 1)

≤
∑
i∈[n]

hij((1− c)p(t) + cp(t+1), 1)bi

(1− c)ei(p(t), 1) + cei(p(t+1), 1)

Further, by Lemma 5 of Goktas et al. (2022b), since the expenditure function

is homogeneous of degree 0 in prices, notice that we have for all j ∈ [m],

maxp∈Rm
+ /{0} hij(p, 1) = maxp∈∆m

hij(p, 1). Note that maxp∈∆m
hij(p, 1) is well-

defined since ∆m is compact, hij(p, 1) exists for all p ∈ Rm+ , and is by Berge’s

maximum theorem (Berge, 1997) continuous in homothetic Fisher markets. Since by

the entropic tâtonnement update rule for all time-steps t ∈ N+, and goods j ∈ [m],

p
(t)
j > 0, we then have hij((1 − c)p(t) + cp(t+1), 1) ≤ maxp∈∆m

hij(p, 1). Hence,

continuing, we have for all j ∈ [m]:

qj(p
(t) + c∆p) ≤

∑
i∈[n]

maxp∈∆m
hij(p, 1)bi

(1− c)ei(p(t), 1) + cei(p(t+1), 1)

Taking a maximum over c ∈ [0, 1] and t ∈ N+, and j ∈ [m], we have for all goods
j ∈ [m]:

max
j∈[m],t∈N+,c∈[0,1]

qj(p
(t) + c∆p) ≤ max

j∈[m],t∈N+,c∈[0,1]

∑
i∈[n]

maxp∈∆m hij(p, 1)bi
(1− c)ei(p(t), 1) + cei(p(t+1), 1)

≤ max
j∈[m]

∑
i∈[n]

maxp∈∆m hij(p, 1)bi
mint∈N+,c∈[0,1]{(1− c)ei(p(t), 1) + cei(p(t+1), 1)}

= max
j∈[m]

∑
i∈[n]

maxp∈∆m hij(p, 1)bi
mint∈N+{min{ei(p(t), 1), ei(p(t+1), 1)}}

= max
j∈[m]

∑
i∈[n]

maxp∈∆m hij(p, 1)bi
mint∈N+ ei(p

(t), 1)

= max
j∈[m]

∑
i∈[n]

max
t∈N+

maxp∈∆m hij(p, 1)bi
ei(p(t), 1)

= max
j∈[m]

∑
i∈[n]

max
t∈N+

vi(p
(t), bi) max

p∈∆m

hij(p, 1)

where the last line follows from Corollary 1, Appendix A of Goktas et al. (2022b).

Plugging the above bound into Equation (6.12), we then obtain the following bound
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which implies the result:

ψ(p(t+1))− ℓψ(p(t+1),p(t))

≤ max
j∈[m]

∑
i∈[n]

max
t∈N+

vi(p
(t), bi) max

p∈∆m

hij(p, 1)


(
6 +

85ϵ

12
+

25ϵ2

72

)
divKL(p

(t) +∆p,p(t))

For the above lemma to be applied in conjuction with Theorem 6.1.1, we have to ensure that

the quantity maxj∈[m],t∈N+

{∑
i∈[n] vi(p

(t), bi)maxp∈∆m
hij(p, 1)

}
is bounded throughout

entropic tâtonnement for homothetic Fisher markets. To understand the relevance of this

bound, we note that this quantity is an upper bound to the aggregate demand, that is:

q
(t)
j =

∑
i∈[n]

d
(t)
ij

=
∑
i∈[n]

hij(p
(t), vi(p

(t), bi))

=
∑
i∈[n]

vi(p
(t), bi)hij(p

(t), 1) (Lemma 5 of Goktas et al. (2022b))

≤
∑
i∈[n]

min
t∈N+

vi(p
(t), bi) max

p∈∆m

hij(p, 1)

As such, proving an upper bound to it implies the excess demand is bounded throughout

entropic tâtonnement, which in turn implies Lipschitz-smoothness (and hence Bregman-

smoothness for any choice of strongly convex kernel function) of the dual of our convex

program over all trajectories of entropic tâtonnement. The following lemma establishes such

a bound and shows that it depends on the initial choice of price p(0), and the maximum

possible Hicksian demand to obtain one unit of utility.

Lemma 6.5.2 [Bounded Indirect Utility for Homothetic Fisher Markets].

If entropic tâtonnement is run on a homothetic Fisher market (u, b), then, for all t ∈ N+, the
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following bound holds:

vi(p
(t), bi) max

p∈∆m

hij(p, 1) ≤ vi(p(0), bi) max
p∈∆m

hij(p, 1) + 2 max
p,q∈∆m

k∈[m]:hik(p,1)>0

{
hij(q, 1)

2

hik(p, 1)2

}

Proof of Lemma 6.5.2

Fix a buyer i ∈ [n] and good j ∈ [m]. First, note that since by Lemma 5 of Goktas

et al. (2022b), since the expenditure function is homogeneous of degree 0 in prices,

we have for all j ∈ [m], maxp∈Rm
+ /{0} hij(p, 1) = maxp∈∆m

hij(p, 1). In addition, note

that maxp∈∆m
hij(p, 1) is well-defined since ∆m is compact, hij(p, 1) exists for all

p ∈ Rm+ , and is by Berge’s maximum theorem (Berge, 1997) continuous in homothetic

Fisher markets. Further, by the entropic tâtonnement update rule for all time-steps

t ∈ N+, and goods j ∈ [m], p(t)j > 0, we then have hij(p(t), 1) ≤ maxp∈∆m
hij(p, 1).

We now proceed to prove the claim of the lemma by induction on t.

Base case: t = 0. Since max
p,q∈∆m

k∈[m]:hik(p,1)>0

{
hij(q,1)2

hik(p,1)2

}
≥ 0, by definition, we have

vi(p
(0), bi) max

p∈∆m

hij(p, 1) ≤ vi(p(0), bi) max
p∈∆m

hij(p, 1)+2 max
p,q∈∆m

k∈[m]:hik(p,1)>0

{
hij(q, 1)

2

hik(p, 1)2

}
.

Inductive hypothesis. Suppose that for any t ∈ N, we have:

vi(p
(t), bi) max

p∈∆m

hij(p, 1) ≤ vi(p(0), bi) max
p∈∆m

hij(p, 1) + 2 max
p,q∈∆m

k∈[m]:hik(p,1)>0

{
hij(q, 1)

2

hik(p, 1)2

}
Inductive step. We will show that the inductive hypothesis holds for t + 1. We

proceed with a proof by cases.

Case 1: d
(t)
ij ≥ max

p,q∈∆m

k∈[m]:hik(p,1)>0

{
hij(q,1)
hik(p,1)

}
.
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For all k ∈ [m], we have:

d
(t)
ik =

h
(t)
ik

h
(t)
ij

d
(t)
ij (Lemma 7.2.9, Section 7.2)

≥
h
(t)
ik

h
(t)
ij

max
p,q∈∆m

k∈[m]:hik(p,1)>0

{
hij(q, 1)

hik(p, 1)

}

≥
h
(t)
ik

h
(t)
ij

h
(t)
ij

h
(t)
ik

= 1

where the penultimate line follows from the case hypothesis.

The above means that the price of all goods will increase in the next time period, i.e.,

∀k ∈ [m], p
(t+1)
k ≥ p

(t)
k which implies that ei(p(t+1), 1) ≥ ei(p

(t), 1) ≥ 0. In addition,

note that the expenditure is positive since prices reach 0 only asymptotically under

entropic tâtonnement. Which gives us:

bi

ei(p(t+1), 1)
≤ bi

ei(p(t), 1)

vi(p
(t+1), bi) ≤ vi(p(t), bi) (Corollary 1 of Goktas et al. (2022b))

Multiplying both sides by maxp∈∆m
hij(p, 1), we have for all j ∈ [m]:

vi(p
(t+1), bi) max

p∈∆m

hij(p, 1) ≤ vi(p(t), bi) max
p∈∆m

hij(p, 1)

= vi(p
(0), bi) max

p∈∆m

hij(p, 1) + 2 max
p,q∈∆m

k∈[m]:hik(p,1)>0

{
hij(q, 1)

2

hik(p, 1)2

}
where the last line follows by the induction hypothesis.

Case 2: d
(t)
ij < max p,q∈∆m

k∈[m]:hik(p,1)>0

{
hij(q,1)
hik(p,1)

}
.

For all k ∈ [m], we have:

d
(t)
ik =

h
(t)
ik

h
(t)
ij

d
(t)
ij

≤
h
(t)
ik

h
(t)
ij

max
p,q∈∆m

k∈[m]:hik(p,1)>0

{
hij(q, 1)

hik(p, 1)

}

=
h
(t)
ik

h
(t)
ij

h
(t)
ij

h
(t)
ik

= 1
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where the penultimate line follows from the case hypothesis.

The above means that prices of all goods will decrease in the next time period. Now,

note that regardless of the aggregate demand q(t) at time t ∈ N, prices can decrease

at most by a factor of e−
1

5 ≥ 1/2, that is, for all j ∈ [m]

p
(t+1)
j = p

(t)
j exp

{
zj(p

(t))

γ

}

= p
(t)
j exp

{
q
(t)
j − 1

γ

}

≥ p(t)j exp

{
−1
γ

}

≥ p(t)j exp


−1

5 max
t∈N
j∈[m]

{1, q(t)j }


≥ p(t)j exp

{
−1
5

}
≥ p(t)j e−

1

5 ≥ 1

2
p
(t)
j

Now, notice that we have ei(p(t+1), 1) ≥ ei(
1
2p

(t), 1) = 1
2ei(p

(t), 1) ≥ 0, since the

expenditure of the buyer decreases the most when the prices of all goods decrease si-

multaneously and the expenditure function is homogeneous of degree 1 in prices. In

addition, note that the expenditure is positive since prices reach 0 only asymptotically

under entropic tâtonnement. Hence, we have:

bi

ei(p(t+1), 1)
≤ 2

bi

ei(p(t), 1)

vi(p
(t+1), bi) ≤ 2vi(p

(t), bi) (Corollary 1 of Goktas et al. (2022b))

Multiplying both sides by h(t)ij , and applying Lemma 7.2.9, we have for all j ∈ [m]:

vi(p
(t+1), bi)h

(t)
ij ≤ 2d

(t)
ij

vi(p
(t+1))h

(t)
ij ≤ 2 max

p,q∈∆m

k∈[m]:hik(p,1)>0

{
hij(q, 1)

hik(p, 1)

}
(Case hypothesis)
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Now, taking a minimum over all j ∈ [m] s.t. h(t)ij > 0, we have

vi(p
(t+1)) min

k∈[m]:h
(t)
ik >0

h
(t)
ik ≤ 2 max

p,q∈∆m

k∈[m]:hik(p,1)>0

{
hij(q, 1)

hik(p, 1)

}

vi(p
(t+1)) min

p∈∆m

k∈[m]:hik(p,1)>0

hik(p, 1) ≤ 2 max
p,q∈∆m

k∈[m]:hik(p,1)>0

{
hij(q, 1)

hik(p, 1)

}

vi(p
(t+1)) ≤ 2

min
p∈∆m

k∈[m]:hik(p,1)>0

hik(p, 1)
max

p,q∈∆m

k∈[m]:hik(p,1)>0

{
hij(q, 1)

hik(p, 1)

}

Finally, multiplying both sides by maxq∈∆m
hij(q, 1), we have:

vi(p
(t+1)) max

q∈∆m

hij(q, 1)

≤ 2
maxq∈∆m

hij(q, 1)

min
p∈∆m

k∈[m]:hik(p,1)>0

hik(p, 1)
max

p,q∈∆m

k∈[m]:hik(p,1)>0

{
hij(q, 1)

hik(p, 1)

}

= 2

 max
p,q∈∆m

k∈[m]:hik(p,1)>0

{
hij(q, 1)

hik(p, 1)

} max
p,q∈∆m

k∈[m]:hik(p,1)>0

{
hij(q, 1)

hik(p, 1)

}
= 2 max

p,q∈∆m

k∈[m]:hik(p,1)>0

{
hij(q, 1)

hik(p, 1)

}2

≤ vi(p(0), bi) max
p∈∆m

hij(p, 1) + 2 max
p,q∈∆m

k∈[m]:hik(p,1)>0

{
hij(q, 1)

2

hik(p, 1)2

}
Hence, the inductive hypothesis holds for t + 1. Putting it all together, we have, for

all t ∈ N:

vi(p
(t), bi) max

p∈∆m

hij(p, 1) ≤ vi(p(0), bi) max
p∈∆m

hij(p, 1) + 2 max
p,q∈∆m

k∈[m]:hik(p,1)>0

{
hij(q, 1)

2

hik(p, 1)2

}

Combining Lemma 6.5.1, and Lemma 6.5.2 with Theorem 6.1.1, we obtain our main result,

namely a worst-case convergence rate of O((1+ϵ2)/t) for entropic tâtonnement in homothetic

Fisher markets.

Theorem 6.5.1 [Convergence of Entropic Tâtonnement in Homothetic Fisher Markets].

Suppose (u, b) is a homothetic Fisher market and ϵ = maxp∈∆m,j,k∈[m]

∣∣ϵhij ,pk(p, 1)
∣∣. Then,
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the following holds for entropic tâtonnement: for all t ∈ N,

ψ(p(t))− ψ(p∗) ≤ γdivKL(p
∗,p(0))

t
, (6.13)

where γ =

1 + max
j∈[m]

∑
i∈[n]

vi(p(0), bi) max
q∈∆m

hij(q, 1) + 2 max
p,q∈∆m

k∈[m]:hik(p,1)>0

{
hij(q,1)

2

hik(p,1)
2

}(6 + 85ϵ
12

+ 25ϵ2

72

)
.
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Chapter 7

Appendix for Part I

7.1 Details of Section 5.4.3 Experiments

7.1.1 Computational Resources

Our experiments were run on MacOS machine with 8GB RAM and an Apple M1 chip, and

took about 10 minutes to run. Only CPU resources were used.

7.1.2 Programming Languages, Packages, and Licensing

We ran our experiments in Python 3.7 (Van Rossum and Drake Jr, 1995), using NumPy

(Harris et al., 2020), Jax (Bradbury et al., 2018), and JaxOPT (Blondel et al., 2021). All figures

were graphed using Matplotlib (Hunter, 2007).

Python software and documentation are licensed under the PSF License Agreement.

Numpy is distributed under a liberal BSD license. Pandas is distributed under a new

BSD license. Matplotlib only uses BSD compatible code, and its license is based on the PSF

license.

7.1.3 Experimental Setup Details

Each economy is initialized using a random seed to ensure reproducibility. Each con-

sumer is assigned an initial endowment, drawn from a uniform distribution: e′ ∼

Unif(10−6, 1), ∀i ∈ [n], j ∈ [m]. For numerical stability, we restrict the total economy-wide
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aggregate supply of each commodity to remain fixed at 101, to this end we normalize the

endowments of consumers for all j ∈ [m], i ∈ [n] to obtain their final endowment:

eij
.
=

10e′ij∑
i∈[n] e

′
ij

.

Each consumer’s valuation of each commodity is drawn from a uniform distribution, i.e.,

for all j ∈ [m], i ∈ [n]:

vij ∼ Unif(0, 1).

For any CES consumer i ∈ [n], the elasticity of substitution parameter ρi, is drawn as follows

from the uniform distribution for substitutes and complements consumers respectively:

ρsubstitutes
i ∼ Unif(0.6, 0.9) ρ

complements
i ∼ Unif(−1000,−1)

The initial price vector p(0) for the algorithms is drawn from a uniform distribution s.t. for

all j ∈ [m]:

p
(0)
j ∼ Unif(1, 10).

We note that while we initialize the prices between 1 and 10 for numerical stability, this

choice is without loss of generality since the excess demand is homogeneous of degree 0.

To summarize. Given a random seed, the initialization process consists of: 1) Sampling

endowments from a uniform distribution and normalizing them to ensure total supply

constraints; 2) sampling valuations from a uniform distribution; 3) sampling substitution

parameters for CES consumers, 4) generating an initial price vector.

7.2 Omitted Results and Proofs from Chapter 6

Lemma 7.2.1.

Suppose that ui is homogeneous, i.e., ∀λ > 0, ui(λxi) = λui(xi). Then, the expendi-

ture function and the Hicksian demand are homogeneous in νi, i.e., for all ∀λ > 0,

ei(p, λνi) = λei(p, νi) and hi(p, λνi) = λhi(p, νi). Likewise, the indirect utility function and

1This is without loss of generality since commodities are divisible.
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the Marshallian demand are homogeneous in bi, i.e., for all ∀λ > 0, vi(p, λbi) = λvi(p, bi)

and di(p, λbi) = λdi(p, bi).

Lemma 7.2.1

Without loss of generality, assume ui is homogeneous of degree 1.a

For Hicksian demand, we have that:

hi(p, λνi) (7.1)

= argmin
xi:ui(xi)≥λνi

p ·
(
λ
xi
λ

)
(7.2)

= λ argmin
xi:ui(

x
i

λ
)≥νi

p ·
(xi
λ

)
(7.3)

= argmin
xi:ui(xi)≥νi

p · xi (7.4)

= λhi(p, νi) . (7.5)

The first equality follows from the definition of Hicksian demand; the second, by the

homogeneity of ui; the third, by the nature of constrained optimization; and the last,

from the definition of Hicksian demand again. This result implies homogeneity of

the expenditure function in νi:

ei(p, λνi) = hi(p, λνi) · p = λhi(p, νi) · p = λei(p, νi) .

The first and last equalities follow from the definition of the expenditure function,

while the second equality follows from the homogeneity of Hicksian demand (Equa-

tion (7.5)).

The proof in the case of Marshallian demand and the indirect utility function is

analogous.
aIf the utility function is homogeneous of degree k, we can use a monotonic transformation, namely

take the kth root, to transform the utility function into one of degree 1, while still preserving the
preferences that it represents.
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Lemma 6.2.1.

If ui is continuous and homogeneous of degree 1, then vi(p, bi) and ei(p, νi) are differen-

tiable in bi and νi, resp. Further, Dbivi(p, bi) = {vi(p, 1)} and Dνiei(p, νi) = {ei(p, 1)}.

Lemma 6.2.1

We prove differentiability from first principles:

lim
h→0

ei(p, νi + h)− ei(p, νi)
h

= lim
h→0

ei(p, (1)(νi + h))− ei(p, (1)νi)
h

= lim
h→0

ei(p, 1)(νi + h)− ei(p, 1)(νi)
h

= lim
h→0

ei(p, 1)(νi + h− νi)
h

= lim
h→0

ei(p, 1)(h)

h

= ei(p, 1)

The first line follows from the definition of the derivative; the second line, by homo-

geneity of the expenditure function (Lemma 7.2.1), since ui is homogeneous; and the

final line follows from the properties of limits. The other two lines follow by simple

algebra.

Hence, as ei(p, νi) is differentiable in νi, its subdifferential is a singleton with

Dνiei(p, νi) = {ei(p, 1)}. The proof of the analogous result for the indirect utility

function’s derivative with respect to bi is similar .

Corollary 6.2.1.

If buyer i’s utility function ui is CCH, then

1

ei(p, 1)
=

1
∂ei(p,νi)
∂νi

=
∂vi(p, bi)

∂bi
= vi(p, 1) . (6.6)

Proof of Corollary 6.2.1

By Lemma 6.2.1, we know that ei(p, νi) is differentiable in νi and that Dνiei(p, νi) =

{ei(p, 1)}. Similarly, by Lemma 6.2.1, we know that Dbivi(p, bi) is differentiable in bi
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and that Dbivi(p, bi) = {vi(p, 1)}. Combining these facts yields:

Dνiei(p, νi) · Dbivi(p, bi) = ei(p, 1) · vi(p, 1) (Lemma 6.2.1)

= ei(p, vi(p, 1)) (Lemma 7.2.1)

= 1 (Equation (7.12))

Therefore, 1
∂ei(p,νi)

∂νi

= ∂vi(p,bi)
∂bi

. Combining this conclusion with Lemma 6.2.1, we

obtain the result.

Lemma 7.2.2.

Given a CCH Fisher market (u, b), the dual of our convex program (Theorem 6.2.1) and

that of Eisenberg Gale differ by a constant, namely
∑

i∈[n] (bi log bi − bi). In particular,

min
p∈Rm

+

∑
j∈[m]

pj −
∑
i∈[n]

bi log (∂νiei(p, νi))


= min

p∈Rm
+

∑
j∈[m]

pj +
∑
i∈[n]

(bi log (vi(p, bi))− bi)−
∑
i∈[n]

(bi log bi − bi)

Lemma 7.2.2

min
p∈Rm

+

∑
j∈[m]

pj +
∑
i∈[n]

(bi log (vi(p, bi))− bi)

= min
p∈Rm

+

∑
j∈[m]

pj +
∑
i∈[n]

bi log (bivi(p, 1))−
∑
i∈[n]

bi (Lemma 7.2.1)

= min
p∈Rm

+

∑
j∈[m]

pj +
∑
i∈[n]

bi log (vi(p, 1))

+
∑
i∈[n]

bi log bi −
∑
i∈[n]

bi

= min
p∈Rm

+

∑
j∈[m]

pj −
∑
i∈[n]

bi log

(
1

vi(p, 1)

)+
∑
i∈[n]

bi log bi −
∑
i∈[n]

bi

= min
p∈Rm

+

∑
j∈[m]

pj −
∑
i∈[n]

bi log (ei(p, 1))

+
∑
i∈[n]

bi log bi −
∑
i∈[n]

bi (Corollary 6.2.1)

= min
p∈Rm

+

∑
j∈[m]

pj −
∑
i∈[n]

bi log (∂νiei(p, νi))

+
∑
i∈[n]

bi log bi −
∑
i∈[n]

bi (Lemma 6.2.1)
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Theorem 6.2.1 [New Convex Program for Homothetic Fisher Markets].

The optimal solutions (X∗,p∗) to the following primal and dual convex programs corre-

spond to Fisher equilibrium allocations and prices, respectively, of the homothetic Fisher

market (u, b):

Primal

max
X∈Rn×m

+

∑
i∈[n]

[
bi log ui

(
xi
bi

)
+ bi

]

subject to
∑
i∈[n]

xij ≤ 1 ∀j ∈ [m]

Dual

min
p∈∆m

ψ(p)
.
=
∑
j∈[m]

pj −
∑
i∈[n]

bi log (ei(p, 1))

Theorem 6.2.1

By Lemma 7.2.2, our dual and the Eisenberg-Gale dual differ by a constant, which

is independent of the decision variables p ∈ Rm+ . Hence, the optimal prices p∗ of

our dual are the same as those of the Eisenberg-Gale dual, and thus correspond to

equilibrium prices in the CCH Fisher market (u, b). Finally, the objective function of

our convex program’s primal is:∑
i∈[n]

bi log (ui (xi))−
∑
i∈[n]

(bi log bi − bi) =
∑
i∈[n]

bi log ui

(
xi
bi

)
+
∑
i∈[n]

bi .

Danskin’s theorem (Danskin, 1966) offers insights into optimization problems of the form:

minx∈X f(x,p), whereX ⊂ Rm is compact and non-empty. Among other things, Danskin’s

theorem allows us to compute the subdifferential of value of this optimization problem

with respect to p.

Theorem 7.2.1 [Danskin’s Theorem (Danskin, 1966)].

Consider an optimization problem of the form: minx∈X f(x,p), where X ⊂ Rm is

compact and non-empty. Suppose that X is convex and that f is concave in x. Let

V (p) = minx∈X f(x,p) and X∗(p) = argminx∈X f(x,p). Then the subdifferential of V at

p̂ is given by DpV (p̂) =
{
∇pf(x

∗(p̂), p̂) | x∗(p̂) ∈ X∗(p̂)
}

.
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Lemma 6.3.1 [Shephard’s lemma, generalized for set-valued Hicksian demand (Blume,

2017; Shephard, 2015; Tanaka, 2008)].

Let ei(p, νi) be the expenditure function of buyer i and hi(p, νi) be the Hicksian demand

set of buyer i. The subdifferential Dpei(p, νi) is the Hicksian demand at prices p and utility

level νi, i.e., Dpei(p, νi) = hi(p, νi).

Lemma 6.3.1

Recall that ei(p, νi) = minx∈Rm
+ :ui(x)≥νi p · x. Without loss of generality, we can

assume that consumption set is bounded from above, since utilities are assumed to

represent locally non-satiated preferences, i.e., minx∈X:ui(x)≥νi p · x where X ⊂ Rm+

is compact. Using Danskin’s theorem:

Dpei(p, νi) =
{
∇p (p · x) (x∗(p, νi)) | x∗(p, νi) ∈ hi(p, νi)

}
(Danskin’s Thm)

= {x∗(p, νi) | x∗(p, νi) ∈ hi(p, νi)}

= hi(p, νi)

The first equality follows from Danskin’s theorem, using the facts that the objective

of the expenditure minimization problem is affine and the constraint set is compact.

The second equality follows by calculus, and the third, by the definition of Hicksian

demand.

Theorem 6.3.1.

Given any homothetic Fisher market (u, b), the subdifferential of the dual of the program

in Theorem 6.2.1 at any price p is equal to the negative excess demand in (u, b) at price p:

i.e., Dpψ(p) = −Z(p).
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Theorem 6.3.1

For all goods j ∈ [m], we have:

Dpj

∑
j∈[m]

pj −
∑
i∈[n]

bi log ∂νiei(p, νi)


= {1} − Dpj

∑
i∈[n]

bi log ∂νiei(p, νi)


= {1} −

∑
i∈[n]

Dpj (bi log ∂νiei(p, νi))

= {1} −
∑
i∈[n]

dij(p, bi) (Lemma 6.3.2)

= −zj(p)

Lemma 6.3.2.

If buyer i’s utility function ui is continuous and homogeneous, then

Dp

(
bi log

(
∂ei(p,νi)
∂νi

))
= di(p, bi).

Lemma 6.3.2

Without loss of generality, we can assume ui is homogeneous of degree 1. Then:

Dp

(
bi log

(
∂ei(p, νi)

∂νi

))
=

(
bi

∂ei(p,νi)
∂νi

)
Dp

(
∂ei(p, νi)

∂νi

)
= bi

(
∂vi(p, bi)

∂bi

)
Dp

(
∂ei(p, νi)

∂νi

)
(Corollary 6.2.1)

= bi

(
∂vi(p, bi)

∂bi

)
Dpei(p, 1) (Lemma 6.2.1)

= bi

(
∂vi(p, bi)

∂bi

)
hi(p, 1) (Shephard’s Lemma)

= bi vi(p, 1)hi(p, 1) (Lemma 6.2.1)

= vi(p, bi)hi(p, 1) (Lemma 7.2.1)

= hi (p, vi(p, bi)) (Lemma 7.2.1)

= di(p, bi) (Equation (7.14))
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We start by presenting the first lemma, which shows that the utility level elasticity of

Hicksian demand is equal to 1 in homothetic Fisher markets.

Lemma 6.4.1.

For any Hicksian demand hi associated with a homogeneous utility function ui, for all

j, k ∈ [m],p ∈ Rm+ , νi ∈ R+, it holds that ϵhij ,pk(p, νi) = ϵhij ,pk(p, 1) = 1.

Proof of Lemma 6.4.1

Recall from Goktas et al. (2022b) that for homogeneous utility functions, the Hicksian

demand is homogeneous in ν, i.e., for all λ ≥ 0, hi(p, λν) = λhi(p, ν). Hence, we

have:

ϵhij ,νi(p, νi) = Dνihij(p, νi)
νi

hij(p, νi)
(7.6)

= νiDνihij(p, 1)
νi

νihij(p, 1)
(Homogeneity of Hicksian demand) (7.7)

=
νi

hij(p, 1)
Dνihij(p, 1) (7.8)

=
νi

hij(p, 1)
Dνihij(p, 1) (7.9)

= ϵhij ,νi(p, 1) (7.10)

Additionally, looking back at Equation (7.9), since Hicksian demand is homoge-

neous of degree 1 in νi for homogeneous utility function (Lemma 7.2.1), by Euler’s

theorem for homogeneous functions (see, for instance, (Border, 2017)), we have:

νi
hij(p,1)

Dνihij(p, 1) =
hij(p,1)
hij(p,1)

= 1 .

We recall Shephard’s lemma which was used in the Equation (6.8):

Lemma 6.3.1 [Shephard’s lemma, generalized for set-valued Hicksian demand (Blume,

2017; Shephard, 2015; Tanaka, 2008)].

Let ei(p, νi) be the expenditure function of buyer i and hi(p, νi) be the Hicksian demand

set of buyer i. The subdifferential Dpei(p, νi) is the Hicksian demand at prices p and utility

level νi, i.e., Dpei(p, νi) = hi(p, νi).
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We first prove that by setting γ to be 5 times the maximum demand for any good throughout

the entropic tâtonnement process , we can bound the change in the prices of goods in each

round. We will use the fact that the change in the price of each good is bounded as an

assumption in most of the following results.

Lemma 7.2.3.

Suppose that entropic tâtonnement process is run for all t ∈ [T] ⊆ N+ with γ ≥ 5 max
t∈[T]
j∈[m]

{1, q(t)j }

and let ∆p = p(t+1) − p(t). then the following holds for all t ∈ N:

e−
1

5 p
(t)
j ≤ p

(t+1)
j ≤ e

1

5 p
(t)
j and

|∆pj |

p
(t)
j

≤ 1

4

Lemma 7.2.3

The price of of a good j ∈ [m] can at most increase by a factor of e
1

5 :

p
(t+1)
j = p

(t)
j e

zj(p
(t))

γ = p
(t)
j exp

{
q
(t)
j − 1

γ

}
≤ p

(t)
j exp

{
q
(t)
j

γ

}
≤ p

(t)
j exp


q
(t)
j

5 max
t∈N
j∈[m]

{1, q(t)j }

 ≤ p
(t)
j e

1
5

and decrease by a factor of e−
1

5 :

p
(t+1)
j = p

(t)
j e

zj(p
(t))

γ = p
(t)
j exp

{
q
(t)
j − 1

γ

}
≥ p

(t)
j exp

{
−1

γ

}
≥ p

(t)
j exp


−1

5 max
t∈N
j∈[m]

{1, q(t)j }

 ≥ p
(t)
j e−

1
5

Hence, we have e−
1

5 p
(t)
j ≤ p

(t+1)
j ≤ e

1

5 p
(t)
j . Substracting p(t)j from both sides and

dividing by p(t)j , we obtain:

|∆pj |

p
(t)
j

=
|p(t+1)
j − p(t)j |

p
(t)
j

≤ e1/5 − 1 ≤ 1

4

The following two results are due to Cheung et al. (2013). We include their proofs for

completeness. They allows us to relate the change in prices to the KL-divergence.

Lemma 7.2.4 [Cheung et al. (2013)].

Fix t ∈ N+ and let ∆p = p(t+1) − p(t). Suppose that for all j ∈ [m], |∆pj |
p
(t)
j

≤ 1
4 , then:

(∆pj)
2

p
(t)
j

≤ 9

2
divKL(p

(t)
j +∆pj , p

(t)
j ) (7.11)
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Lemma 7.2.4

The bound log(x) ≥ x− x2 for |x|≤ 1
4 is used below:

divKL(p
(t)
j +∆pj , p

(t)
j )

= (p
(t)
j +∆pj)(log(p

(t)
j +∆pj))− (p

(t)
j +∆pj − p

(t)
j log(pj) + p

(t)
j − log(p

(t)
j )∆pj

= −∆pj + (p
(t)
j +∆pj) log

(
1 +

∆pj

p
(t)
j

)

≥ −∆pj + (p
(t)
j +∆pj)

(
∆pj

p
(t)
j

− 11

18

(∆pj)
2

(p
(t)
j )2

)

≥ 7

18

(∆pj)
2

p
(t)
j

(
1− 11

7

∆pj

p
(t)
j

)

=
7

18

17

28

(∆pj)
2

p
(t)
j

≥ 2

9

(∆pj)
2

p
(t)
j

Lemma 7.2.5.

Fix t ∈ N+ and let ∆p = p(t+1) − p(t). Suppose that |∆pj |
pj
≤ 1

4 , then for any c ∈ (0, 1), and

A ∈ Rn×m, and for all j ∈ [m]:

1

bi

∑
j∈[m]

∑
k∈[m]

aildik(p
(t) + c∆p, bi)|∆pj ||∆pk|≤

4

3

∑
l∈[m]

ail

p
(t)
l

(∆pl)
2
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Lemma 7.2.5

First, note that since by our assumption the utilities are locally non-satiated, Walras’
law is satisfied, i.e., we have bi =

∑
k∈[m] dik(p

(t) + c∆p, bi)(p
(t)
k + c∆pk);

bi
∑
l∈[m]

ail

p
(t)
l

(∆pl)
2

=
∑
l∈[m]

(∑
k∈[m] dik(p

(t) + c∆p, bi)(p
(t)
k + c∆pk)

)
dil(p

(t) + c∆p, bi)

p
(t)
l

(∆pl)
2

≥
∑
l∈[m]

(∑
k∈[m] dik(p

(t) + c∆p, bi)(p
(t)
k − 1

4
p
(t)
k )
)
ail

p
(t)
l

(∆pl)
2

=
∑
l∈[m]

(∑
k∈[m] dik(p

(t) + c∆p, bi)(
3
4
p
(t)
k )
)
ail

p
(t)
l

(∆pl)
2

=
3

4

∑
l∈[m]

∑
k∈[m]

aildil(p
(t) + c∆p, bi)

p
(t)
k

p
(t)
l

(∆pl)
2

=
3

4

∑
l∈[m]

aildil(p
(t) + c∆p, bi)(∆pl)

2 +
∑
l∈[m]

∑
k ̸=l

aildik(p
(t) + c∆p, bi)

p
(t)
k

p
(t)
l

(∆pl)
2


=

3

4

∑
l∈[m]

aildil(p
(t) + c∆p, bi)(∆pl)

2 +
∑
k∈[m]

∑
k≤l

aildik(p
(t) + c∆p, bi)

(
p
(t)
k

p
(t)
l

|∆pl|2+
p
(t)
l

p
(t)
k

|∆pk|2
)

Now, we apply the AM-GM inequality, i.e., for all x, y ∈ R+ since
√
xy ≤ x+y

2 , we

have:

bi
∑
l∈[m]

ail

p
(t)
l

(∆pl)
2

≥ 3

4

∑
l∈[m]

aildil(p
(t) + c∆p, bi)(∆pl)

2 +
∑
k<l

aildik(p
(t) + c∆p, bi) (2|∆pl||∆pk||)

=
3

4

∑
j∈[m]

∑
k∈[m]

aildik(p
(t) + c∆p, bi)|∆pj ||∆pk|

Lemma 7.2.6.

(Cheung et al., 2013) For all j ∈ [m]:

1

bi

∑
j∈[m]

∑
k∈[m]

d
(t)
ij d

(t)
ik |∆pj ||∆pk|≤

∑
l∈[m]

d
(t)
il

p
(t)
l

(∆pl)
2
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Lemma 7.2.6

First, note that by Walras’ law we have bi =
∑

k∈[m] d
(t)
ik p

(t)
k ;

bi
∑
l∈[m]

d
(t)
il

p
(t)
l

(∆pl)
2 =

∑
l∈[m]

(∑
k∈[m] d

(t)
ik p

(t)
k

)
d
(t)
il

p
(t)
l

(∆pl)
2

=
∑
l∈[m]

∑
k∈[m]

d
(t)
il d

(t)
ik

p
(t)
k

p
(t)
l

(∆pl)
2

=
∑
l∈[m]

(d
(t)
il )

2(∆pl)
2 +

∑
l∈[m]

∑
k ̸=l

d
(t)
il d

(t)
ik

p
(t)
k

p
(t)
l

(∆pl)
2

=
∑
l∈[m]

(d
(t)
il )

2(∆pl)
2 +

∑
k∈[m]

∑
k≤l

d
(t)
ik d

(t)
il

(
p
(t)
k

p
(t)
l

(∆pl)
2 +

p
(t)
l

p
(t)
k

(∆pk)
2

)

Now, we apply the AM-GM inequality:

bi
∑
l∈[m]

d
(t)
il

p
(t)
l

(∆pl)
2 ≥

∑
l∈[m]

(d
(t)
il )

2(∆pl)
2 +

∑
k<l

d
(t)
ik d

(t)
il (2|∆pl||∆pk||)

=
∑
j∈[m]

∑
k∈[m]

d
(t)
ij d

(t)
ik |∆pj ||∆pk|

An important result in microeconomics is the law of demand which states that when the

price of a good increases, the Hicksian demand for that good decreases in a very general

setting of utility functions (Levin, 2004; Mas-Colell et al., 1995). We state a weaker version

of the law of demand which is re-formulated to fit the tâtonnement framework.

Lemma 7.2.7 [Law of Demand].

(Levin, 2004; Mas-Colell et al., 1995) Suppose that ∀j ∈ [m], t ∈ N, p(t)j , p
(t+1)
j ≥ 0. Then,∑

j∈[m]∆pj

(
h
(t+1)
ij − h(t)ij

)
≤ 0.

A simple corollary of the law of demand which is used throughout the rest of this paper is

that, during tâtonnement, the change in expenditure of the next time period is always less

than or equal to the change in expenditure of the previous time period’s.
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Corollary 7.2.1.

Suppose that ∀t ∈ N, j ∈ [m], p
(t)
j , p

(t+1)
j ≥ 0, then ∀t ∈ N,

∑
j∈[m]∆pjh

(t+1)
ij ≤∑

j∈[m]∆pjh
(t)
ij .

The following lemma simply restates an essential fact about expenditure functions and

Hicksian demand, namely that the Hicksian demand is the minimizer of the expenditure

function.

Lemma 7.2.8.

For all t ∈ N, we have
∑

j∈[m] h
(t)
ij p

(t)
j ≤

∑
j∈[m] h

(t+1)
ij p

(t)
j .

Lemma 7.2.8

For the sake of contradiction, assume that
∑

j∈[m] h
(t)
ij p

(t)
j >

∑
j∈[m] h

(t+1)
ij p

(t)
j . By

the definition of the Hicksian demand, we know that the bundle h
(t)
i provides the

buyer with one unit of utility. Recall that the expenditure at any price p is equal

to the sum of the product of the Hicksian demands and prices, that is ei(p, 1) =∑
j∈[m] hij(p, 1)pj . Hence, we have ei(p

(t)
j , 1) =

∑
j∈[m] h

(t)
ij p

(t)
j >

∑
j∈[m] h

(t+1)
ij p

(t)
j =

ei(p
(t), 1), a contradiction.

We now introduce the following lemma which makes use of results on the behavior of

Hicksian demand and expenditure functions in homothetic Fisher markets introduced

by Goktas et al. (2022b). In conjunction with Corollary 7.2.1 and Lemma 7.2.8 are key in

proving that Lemma 6.5.1 holds allowing us to establish convergence of tâtonnement in a

general setting of utility functions. Additionally, the lemma relates the Marshallian demand

of homogeneous utility functions to their Hicksian demand. Before we present the lemma,
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we recall the following identities (Mas-Colell et al., 1995):

∀bi ∈ R+ ei(p, vi(p, bi)) = bi (7.12)

∀νi ∈ R+ vi(p, ei(p, νi)) = νi (7.13)

∀bi ∈ R+ hi(p, vi(p, bi)) = di(p, bi) (7.14)

∀νi ∈ R+ di(p, ei(p, νi)) = hi(p, νi) (7.15)

Lemma 7.2.9.

Suppose that ui is continuous and homogeneous, then the following holds:

∀j ∈ [m] dij(p, bi) =
bihij(p, 1)∑

j∈[m] hij(p, 1)pj

Lemma 7.2.9

We note that when utility function ui is strictly concave, the Marshallian and Hicksian

demand are unique making the following equalities well-defined.

bihij(p, 1)∑
j∈[m] hij(p, 1)pj

=
bihij(p, 1)

ei(p, 1)
(Definition of expenditure function)

= bivi(p, 1)hij(p, 1) (Corollary 1 of Goktas et al. (2022b))

= vi(p, bi)hij(p, 1)

= hij(p, vi(p, bi))

= dij(p, bi) (Marshallian Identity Equation (7.14))

The following lemma proves that the relative change in expenditures at each iteration of

tatonnement is bounded when the relative change in prices is bounded.

Lemma 7.2.10.

Suppose that ∀j ∈ [m],
|∆pj |
p
(t)
j

≤ 1
4 , then for any t ∈ N+ and i ∈ [n]:∣∣∣∣∣∣

〈
hi(p

(t+1), 1),p(t+1)
〉
−
〈
hi(p

(t), 1),p(t)
〉〈

h
(t)
i ,p(t)

〉
∣∣∣∣∣∣ ≤ 1

4
(7.16)
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Proof

Case 1:
〈
hi(p

(t+1), 1),p(t+1)
〉
≥
〈
hi(p

(t), 1),p(t)
〉

〈
hi(p

(t+1), 1),p(t+1)
〉
−
〈
hi(p

(t), 1),p(t)
〉〈

h
(t)
i ,p(t)

〉 (7.17)

≤
〈
hi(p

(t), 1),p(t+1)
〉
−
〈
hi(p

(t), 1),p(t)
〉〈

h
(t)
i ,p(t)

〉 (Corollary 7.2.1) (7.18)

=

〈
hi(p

(t), 1),p(t+1)
〉〈

h
(t)
i ,p(t)

〉 − 1 (7.19)

≤ 5

4

〈
hi(p

(t), 1),p(t)
〉〈

h
(t)
i ,p(t)

〉 − 1 (7.20)

=
1

4
(7.21)

where the penultimate line follows from the assumption that ∀j ∈ [m],
|∆pj |
p
(t)
j

≤ 1
4 .

Case 2:
〈
hi(p

(t+1), 1),p(t+1)
〉
≤
〈
hi(p

(t), 1),p(t)
〉

〈
hi(p

(t), 1),p(t)
〉
−
〈
hi(p

(t+1), 1),p(t+1)
〉〈

h
(t)
i ,p(t)

〉 (7.22)

= 1−
〈
hi(p

(t+1), 1),p(t+1)
〉〈

h
(t)
i ,p(t)

〉 (7.23)

≤ 1− 3

4

〈
hi(p

(t+1), 1),p(t)
〉〈

h
(t)
i ,p(t)

〉 (7.24)

≤ 1− 3

4

〈
hi(p

(t), 1),p(t)
〉〈

h
(t)
i ,p(t)

〉 (Corollary 7.2.1) (7.25)

=
1

4
(7.26)

where the second line follows from the assumption that ∀j ∈ [m],
|∆pj |
p
(t)
j

≤ 1
4 .
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Lemma 7.2.11.

Suppose that for all j ∈ [m], |∆pj |
pj
≤ 1

4 , then for some c ∈ (0, 1) and t ∈ N+, we have:

1

bi

(〈
d
(t)
i ,∆p

〉
+
bi
2

〈
∇2

pei(p
(t) + c∆p, 1)∆p,∆p

〉
ei(p(t), 1)

)2

(7.27)

≤
(
1 +

5ϵ

9

) ∑
l∈[m]

d
(t)
il

p
(t)
l

(∆pl)
2 +

(
25ϵ2

432

) ∑
l∈[m]

dil(p
(t) + c∆p, bi)

p
(t)
l

(∆pl)
2 (7.28)

Proof of Lemma 7.2.11

1

bi

(〈
d
(t)
i ,∆p

〉
+
bi
2

〈
∇2

pei(p
(t) + c∆p, 1)∆p,∆p

〉
ei(p(t), 1)

)2

=
1

bi

[〈
d
(t)
i ,∆p

〉2
+ 2

〈
d
(t)
i ,∆p

〉(bi
2

〈
∇2

pei(p
(t) + c∆p, 1)∆p,∆p

〉
ei(p(t), 1)

)

+

(
bi
2

〈
∇2

pei(p
(t) + c∆p, 1)∆p,∆p

〉
ei(p(t), 1)

)2


≤ 1

bi

[∣∣∣∣〈d(t)
i ,∆p

〉2∣∣∣∣+ 2
∣∣∣〈d(t)

i ,∆p
〉∣∣∣ ∣∣∣∣∣bi2

〈
∇2

pei(p
(t) + c∆p, 1)∆p,∆p

〉
ei(p(t), 1)

∣∣∣∣∣
+

∣∣∣∣∣bi2
〈
∇2

pei(p
(t) + c∆p, 1)∆p,∆p

〉
ei(p(t), 1)

∣∣∣∣∣
2


≤ 1

bi

[〈
d
(t)
i , |∆p|

〉2
+ 2

〈
d
(t)
i , |∆p|

〉 ∣∣∣∣∣bi2
〈
∇2

pei(p
(t) + c∆p, 1)∆p,∆p

〉
ei(p(t), 1)

∣∣∣∣∣
+ +

∣∣∣∣∣bi2
〈
∇2

pei(p
(t) + c∆p, 1)∆p,∆p

〉
ei(p(t), 1)

∣∣∣∣∣
2


where we denote |∆p| = (|∆p1| , . . . , |∆pm|).

≤ 1

bi

[〈
d
(t)
i , |∆p|

〉2

+ 2
〈
d
(t)
i , |∆p|

〉
(
5ϵ

6

∑
j

(∆pj)
2

pj
dij(p

(t) + c∆p, bi)

)
+

(
5ϵ

6

∑
j

(∆pj)
2

pj
dij(p

(t) + c∆p, bi)

)2]
(Lemma 6.4.2)

=
1

bi

[〈
d
(t)
i , |∆p|

〉2

+
5ϵ

3

〈
d
(t)
i , |∆p|

〉(∑
j

(∆pj)
2

pj
dij(p

(t) + c∆p, bi)

)

+
25ϵ2

36

(∑
j

(∆pj)
2

pj
dij(p

(t) + c∆p, bi)

)2]
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Since ∀j ∈ [m],
|∆pj |
p
(t)
j

≤ 1
4 , we have:

≤ 1

bi

〈d(t)
i , |∆p|

〉2
+

5ϵ

12

〈
d
(t)
i , |∆p|

〉∑
j

∣∣∆pj∣∣ dij(p(t) + c∆p, 1)


+ +

25ϵ2

576

∑
j

|∆pj |dij(p(t) + c∆p, bi)

2 (7.29)

=
1

bi

∑
j∈[m]

∑
k∈[m]

d
(t)
ij d

(t)
ik |∆pj ||∆pk|+

1

bi

5ϵ

12

∑
j

∑
k

d
(t)
ik dij(p

(t) + c∆p, bi) |∆pk|
∣∣∆pj∣∣

+
1

bi

25ϵ2

576

∑
j

∑
k

dij(p
(t) + c∆p, bi)dik(p

(t) + c∆p, bi)|∆pk||∆pj | (7.30)

≤
∑
l∈[m]

d
(t)
il

p
(t)
l

(∆pl)
2 +

1

bi

5ϵ

12

∑
j

∑
k

d
(t)
ik dij(p

(t) + c∆p, bi) |∆pk|
∣∣∆pj∣∣

+
1

bi

25ϵ2

576

∑
j

∑
k

dij(p
(t) + c∆p, bi)dik(p

(t) + c∆p, bi)|∆pk||∆pj | (7.31)

where the last line was obtained by (Lemma 7.2.6). Continuing, by Lemma 7.2.5, we

have:

≤
∑
l∈[m]

d
(t)
il

p
(t)
l

(∆pl)
2 +

5ϵ

12

4

3

∑
l∈[m]

d
(t)
il

p
(t)
l

(∆pl)
2 +

25ϵ2

576

4

3

∑
l∈[m]

dil(p
(t) + c∆p, bi)

p
(t)
l

(∆pl)
2

(7.32)

=

(
1 +

5ϵ

9

) ∑
l∈[m]

d
(t)
il

p
(t)
l

(∆pl)
2 +

(
25ϵ2

432

) ∑
l∈[m]

dil(p
(t) + c∆p, bi)

p
(t)
l

(∆pl)
2 (7.33)

Lemma 7.2.12.
Suppose that |∆pj |

p
(t)
j

≤ 1
4 , then

bi log

(
1− ei(p

(t+1), 1)− ei(p
(t), 1)

ei(p(t), 1)

(
1 +

ei(p
(t+1), 1)− ei(p

(t), 1)

ei(p(t), 1)

)−1
)

≤
(
4

3
+

20ϵ

27

) ∑
l∈[m]

d
(t)
il

p
(t)
l

(∆pl)
2 +

(
5ϵ

6
+

25ϵ2

324

) ∑
l∈[m]

(∆pl)
2

p
(t)
l

dil(p
(t) + c∆p, bi)−

〈
di(p

(t), 1),∆p
〉
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Proof of Lemma 7.2.12

First, we note that h(t)
i · p(t) > 0 because prices during our tâtonnement rule reach 0

only asymptotically and Hicksian demand for one unit of utility at prices p(t) > 0

is strictly positive; and likewise, prices reach∞ only asymptotically, which implies

that Hicksian demand is always strictly positive. This fact will come handy, as we

divide some expressions by h
(t)
i · p(t).

Fix t ∈ N+ and i ∈ [n]. Since by our assumptions |∆pj |
p
(t)
j

≤ 1
4 , by Lemma 7.2.10, we have

0 ≤
∣∣∣ ei(p(t+1),1)−ei(p(t),1)

ei(p(t),1)

∣∣∣ ≤ 1
4 . We can then use the bound 1−x(1+x)−1 ≤ 1+ 4

3x
2−x,

for 0 ≤ |x|≤ 1
4 , with x = ei(p(t+1),1)−ei(p(t),1)

ei(p(t),1) , to get:

bi log

(
1− ei(p

(t+1), 1)− ei(p(t), 1)

ei(p(t), 1)

(
1 +

ei(p
(t+1), 1)− ei(p(t), 1)

ei(p(t), 1)

)−1
)

≤ bi log

(
1 +

4

3

(
ei(p

(t+1), 1)− ei(p(t), 1)

ei(p(t), 1)

)2

− ei(p
(t+1), 1)− ei(p(t), 1)

ei(p(t), 1)

)

Let a = 4
3

(
ei(p(t+1),1)−ei(p(t),1)

ei(p(t),1)

)2
− ei(p(t+1),1)−ei(p(t),1)

ei(p(t),1) . By Lemma 7.2.10, we know

that 0+(−1/4) ≤ a ≤ 1
12 +

1/4⇔ −1/4 ≤ a ≤ 1
3 . We now use the bound x ≥ log (1 + x)

for x > −1, with x = a to get:

bi log

(
1 +

4

3

(
ei(p

(t+1), 1)− ei(p(t), 1)

ei(p(t), 1)

)2

− ei(p
(t+1), 1)− ei(p(t), 1)

ei(p(t), 1)

)

≤ bi

(
4

3

(
ei(p

(t+1), 1)− ei(p(t), 1)

ei(p(t), 1)

)2

− ei(p
(t+1), 1)− ei(p(t), 1)

ei(p(t), 1)

)
Using a first order Taylor expansion of ei(p(t) + ∆p, 1) around p(t), by Taylor’s

theorem (Graves, 1927), we have: ei(p(t)+∆p, 1) = ei(p
(t), 1)+

〈
∇pei(p

(t), 1),∆p
〉
+

1/2
〈
∇2

pei(p
(t) + c∆p, 1)∆p,∆p

〉
for some c ∈ (0, 1). Re-organizing terms around, we

get ei(p(t+1), 1)−ei(p(t), 1) =
〈
∇pei(p

(t), 1),∆p
〉
+1/2

〈
∇2

pei(p
(t) + c∆p, 1)∆p,∆p

〉
,

which gives us:

= bi

4

3

(〈
∇pei(p

(t), 1),∆p
〉
+ 1/2

〈
∇2

pei(p
(t) + c∆p, 1)∆p,∆p

〉
ei(p(t), 1)

)2

−

〈
∇pei(p

(t), 1),∆p
〉
+ 1/2

〈
∇2

pei(p
(t) + c∆p, 1)∆p,∆p

〉
ei(p(t), 1)

)
(7.34)
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Continuing, by Shepherd’s lemma (Shephard, 2015), we have:

=
4

3
bi

(〈
hi(p

(t), 1),∆p
〉
+ 1/2

〈
∇2

pei(p
(t) + c∆p, 1)∆p,∆p

〉
ei(p(t), 1)

)2

−

bi

〈
hi(p

(t), 1),∆p
〉
+ 1/2

〈
∇2

pei(p
(t) + c∆p, 1)∆p,∆p

〉
ei(p(t), 1)

(7.35)

=
4

3

1

bi

(
bi
〈
hi(p

(t), 1),∆p
〉

ei(p(t), 1)
+

bi/2
〈
∇2

pei(p
(t) + c∆p, 1)∆p,∆p

〉
ei(p(t), 1)

)2

−

bi
〈
hi(p

(t), 1),∆p
〉

ei(p(t), 1)
−

bi/2
〈
∇2

pei(p
(t) + c∆p, 1)∆p,∆p

〉
ei(p(t), 1)

(7.36)

=
4

3

1

bi

(〈
di(p

(t), 1),∆p
〉
+

bi/2
〈
∇2

pei(p
(t) + c∆p, 1)∆p,∆p

〉
ei(p(t), 1)

)2

−

〈
di(p

(t), 1),∆p
〉
−

bi/2
〈
∇2

pei(p
(t) + c∆p, 1)∆p,∆p

〉
ei(p(t), 1)

(7.37)

where the last line was obtained from Lemma 7.2.9.

Using Lemma 7.2.11, we have:

≤ 4

3

(1 + 5ϵ

9

) ∑
l∈[m]

d
(t)
il

p
(t)
l

(∆pl)
2 +

25ϵ2

432

∑
l∈[m]

(∆pl)
2

p
(t)
l

dil(p
(t) + c∆p, bi)

−
〈
di(p

(t), 1),∆p
〉
−

bi/2
〈
∇2

pei(p
(t) + c∆p, 1)∆p,∆p

〉
ei(p(t), 1)

(7.38)

=

(
4

3
+

20ϵ

27

) ∑
l∈[m]

d
(t)
il

p
(t)
l

(∆pl)
2 +

25ϵ2

324

∑
l∈[m]

(∆pl)
2

p
(t)
l

dil(p
(t) + c∆p, bi)−

〈
di(p

(t), 1),∆p
〉
−

bi/2
〈
∇2

pei(p
(t) + c∆p, 1)∆p,∆p

〉
ei(p(t), 1)

(7.39)

Finally, we note that ∇2
pei is negative semi-definite, meaning that we have〈

∇2
pei(p

(t) + c∆p, 1)∆p,∆p
〉
≤ 0, allowing us to re-express Equation (7.39) as fol-

lows:

=

(
4

3
+

20ϵ

27

) ∑
l∈[m]

d
(t)
il

p
(t)
l

(∆pl)
2 +

25ϵ2

324

∑
l∈[m]

(∆pl)
2

p
(t)
l

dil(p
(t) + c∆p, bi)−

〈
di(p

(t), 1),∆p
〉
+

∣∣∣∣∣ bi/2
〈
∇2

pei(p
(t) + c∆p, 1)∆p,∆p

〉
ei(p(t), 1)

∣∣∣∣∣ (7.40)
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≤
(
4

3
+

20ϵ

27

) ∑
l∈[m]

d
(t)
il

p
(t)
l

(∆pl)
2 +

25ϵ2

324

∑
l∈[m]

(∆pl)
2

p
(t)
l

dil(p
(t) + c∆p, bi)−

〈
di(p

(t), 1),∆p
〉
+

5ϵ

6

∑
l∈[m]

(∆pl)
2

pl
dil(p

(t) + c∆p, bi) (7.41)

≤
(
4

3
+

20ϵ

27

) ∑
l∈[m]

d
(t)
il

p
(t)
l

(∆pl)
2+

(
5ϵ

6
+

25ϵ2

324

) ∑
l∈[m]

(∆pl)
2

p
(t)
l

dil(p
(t) + c∆p, bi)−

〈
di(p

(t), 1),∆p
〉

(7.42)

where the penultimate line was obtained from Lemma 6.4.2.

Lemma 6.5.2 [Bounded Indirect Utility for Homothetic Fisher Markets].

If entropic tâtonnement is run on a homothetic Fisher market (u, b), then, for all t ∈ N+, the

following bound holds:

vi(p
(t), bi) max

p∈∆m

hij(p, 1) ≤ vi(p(0), bi) max
p∈∆m

hij(p, 1) + 2 max
p,q∈∆m

k∈[m]:hik(p,1)>0

{
hij(q, 1)

2

hik(p, 1)2

}

Proof of Lemma 6.5.2

Fix a buyer i ∈ [n]. First, note that since by Lemma 7.2.1, since the expendi-

ture function is homogeneous of degree 0 in prices, we have for all j ∈ [m],

maxp∈Rm
+
hij(p, 1) = maxp∈∆m

hij(p, 1). In addition, note that maxp∈∆m
hij(p, 1)

is well-defined since ∆m is compact, hij(p, 1) exists for all p ∈ Rm+ , and is by Berge’s

maximum theorem (Berge, 1997) continuous in homothetic Fisher markets.

We will now prove that for any t ∈ N, vi(p
(t), bi)maxp∈∆m

hij(p, 1) ≤

vi(p
(0), bi)maxp∈∆m

hij(p, 1) + 2 max
p,q∈∆m

k∈[m]:hik(p,1)>0

{
hij(q,1)2

hik(p,1)2

}
by induction.

Base case: t = 0. By definition, we have

vi(p
(0), bi) max

p∈∆m

hij(p, 1) ≤ vi(p(0), bi) max
p∈∆m

hij(p, 1)+2 max
p,q∈∆m

k∈[m]:hik(p,1)>0

{
hij(q, 1)

2

hik(p, 1)2

}
.

Inductive hypothesis. Suppose that for any t ∈ N, we have:

vi(p
(t), bi) max

p∈∆m

hij(p, 1) ≤ vi(p(0), bi) max
p∈∆m

hij(p, 1) + 2 max
p,q∈∆m

k∈[m]:hik(p,1)>0

{
hij(q, 1)

2

hik(p, 1)2

}
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Inductive step. We will show that the inductive hypothesis holds for t + 1. We

proceed with a proof by cases.

Case 1: d
(t)
ij ≥ max

p,q∈∆m

k∈[m]:hik(p,1)>0

{
hij(q,1)
hik(p,1)

}
.

For all k ∈ [m], we have:

d
(t)
ik =

h
(t)
ik

h
(t)
ij

d
(t)
ij

≥
h
(t)
ik

h
(t)
ij

max
p,q∈∆m

k∈[m]:hik(p,1)>0

{
hij(q, 1)

hik(p, 1)

}

≥
h
(t)
ik

h
(t)
ij

h
(t)
ij

h
(t)
ik

= 1

where the penultimate line follows from the case hypothesis.

The above means that the price of all goods will increase in the next time period, i.e.,

∀k ∈ [m], p
(t+1)
k ≥ p

(t)
k which implies that ei(p(t+1), 1) ≥ ei(p

(t), 1) ≥ 0. In addition,

note that the expenditure is positive since prices reach 0 only asymptotically under

entropic tâtonnement. Which gives us:

bi

ei(p(t+1), 1)
≤ bi

ei(p(t), 1)

vi(p
(t+1), bi) ≤ vi(p(t), bi) (Corollary 6.2.1)

Multiplying both sides by maxp∈∆m
hij(p, 1), we have for all j ∈ [m]:

vi(p
(t+1), bi) max

p∈∆m

hij(p, 1) ≤ vi(p(t), bi) max
p∈∆m

hij(p, 1)

= vi(p
(0), bi) max

p∈∆m

hij(p, 1) + 2 max
p,q∈∆m

k∈[m]:hik(p,1)>0

{
hij(q, 1)

2

hik(p, 1)2

}
where the last line follows by the induction hypothesis.

Case 2: d
(t)
ij < max p,q∈∆m

k∈[m]:hik(p,1)>0

{
hij(q,1)
hik(p,1)

}
.
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For all k ∈ [m], we have:

d
(t)
ik =

h
(t)
ik

h
(t)
ij

d
(t)
ij

≤
h
(t)
ik

h
(t)
ij

max
p,q∈∆m

k∈[m]:hik(p,1)>0

{
hij(q, 1)

hik(p, 1)

}

=
h
(t)
ik

h
(t)
ij

h
(t)
ij

h
(t)
ik

= 1

where the penultimate line follows from the case hypothesis.

The above means that prices of all goods will decrease in the next time period. Now,

note that regardless of the aggregate demand q(t) at time t ∈ N, prices can decrease

at most by a factor of e−
1

5 ≥ 1/2, that is, for all j ∈ [m]

p
(t+1)
j = p

(t)
j exp

{
zj(p

(t))

γ

}

= p
(t)
j exp

{
q
(t)
j − 1

γ

}

≥ p(t)j exp

{
−1
γ

}

≥ p(t)j exp


−1

5 max
t∈N
j∈[m]

{1, q(t)j }


≥ p(t)j exp

{
−1
5

}
≥ p(t)j e−

1

5 ≥ 1

2
p
(t)
j

Now, notice that we have ei(p(t+1), 1) ≥ ei(
1
2p

(t), 1) = 1
2ei(p

(t), 1) ≥ 0, since the

expenditure of the buyer increases the most when the prices of all goods decrease si-

multaneously and the expenditure function is homogeneous of degree 1 in prices. In

addition, note that the expenditure is positive since prices reach 0 only asymptotically

under entropic tâtonnement. Hence, we have:
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bi

ei(p(t+1), 1)
≤ 2

bi

ei(p(t), 1)

vi(p
(t+1), bi) ≤ 2vi(p

(t), bi) (Corollary 6.2.1)

Multiplying both sides by h(t)ij , and applying Lemma 7.2.9, we have for all j ∈ [m]:

vi(p
(t+1), bi)h

(t)
ij ≤ 2d

(t)
ij

vi(p
(t+1))h

(t)
ij ≤ 2 max

p,q∈∆m

k∈[m]:hik(p,1)>0

{
hij(q, 1)

hik(p, 1)

}
(Case hypothesis)

Now, taking a maximum over all j ∈ [m] s.t. h(t)ij > 0, we have

vi(p
(t+1)) max

k∈[m]:h
(t)
ik
>0

h
(t)
ik ≤ 2 max

p,q∈∆m
k∈[m]:hik(p,1)>0

{
hij(q, 1)

hik(p, 1)

}

vi(p
(t+1)) max

p∈∆m
k∈[m]:hik(p,1)>0

hik(p, 1) ≤ 2 max
p,q∈∆m

k∈[m]:hik(p,1)>0

{
hij(q, 1)

hik(p, 1)

}

vi(p
(t+1)) ≤ 2

max
p∈∆m

k∈[m]:hik(p,1)>0

hik(p, 1)
max
p,q

max
k∈[m]:hik(p,1)>0

{
hij(q, 1)

hik(p, 1)

}

Finally, multiplying both sides by maxq∈∆m
hij(q, 1), we have:

vi(p
(t+1)) max

q∈∆m

hij(q, 1) ≤ 2
maxq∈∆m hij(q, 1)

max
p∈∆m

k∈[m]:hik(p,1)>0

hik(p, 1)
max
p,q

max
k∈[m]:hik(p,1)>0

{
hij(q, 1)

hik(p, 1)

}

vi(p
(t+1)) max

q∈∆m

hij(q, 1) ≤ 2 max
p,q∈∆m

k∈[m]:hik(p,1)>0

{
hij(q, 1)

hik(p, 1)

}2

vi(p
(t+1)) max

p∈∆m

hij(p, 1) ≤ vi(p
(0), bi) max

p∈∆m

hij(p, 1) + 2 max
p,q∈∆m

k∈[m]:hik(p,1)>0

{
hij(q, 1)

2

hik(p, 1)2

}

Hence, the inductive hypothesis holds for t + 1. Putting it all together, we have, for
all t ∈ N:∑
i∈[n]

vi(p
(t), bi) max

p∈∆m

hij(p, 1) ≤
∑
i∈[n]

vi(p
(0), bi) max

p∈∆m

hij(p, 1) + 2
∑
i∈[n]

max
p,q∈∆m

k∈[m]:hik(p,1)>0

{
hij(q, 1)

2

hik(p, 1)2

}
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Part II

Pseudo-Games and Arrow-Debreu
Exchange Economies
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Chapter 8

Scope and Motivation

8.1 Scope

Part II of this thesis is divided into two chapters. In Chapter 9, after reviewing back-

ground material on pseudo-games, I will introduce three new algorithmic approaches

for computing equilibria in pseudo-games with polynomial-time guarantees. The first

approach consists of a family of first-order algorithms known as mirror extragradient

learning dynamics. I will prove that these methods converge to a variational equilibrium

(VE) in variationally stable concave pseudo-games with jointly convex constraints. Beyond

concave settings, I will establish convergence to a first-order variational equilibrium. Next,

I will introduce two types of merit function minimization methods—one first-order and one

second-order—that compute a solution satisfying the necessary conditions for a variational

equilibrium in Lipschitz-smooth pseudo-games with jointly convex constraints.

In Chapter 10, after reviewing the foundational model of Arrow-Debreu economies, I

will demonstrate that the set of Arrow-Debreu equilibria in any pure exchange economy

corresponds exactly to the set of generalized Nash equilibria (GNE) of an associated varia-

tionally stable pseudo-game with jointly convex constraints. Leveraging this equivalence,

I will introduce a novel family of market dynamics, called mirror extratrade dynamics,

and prove their polynomial-time convergence to an Arrow-Debreu equilibrium in pure

exchange economies. Finally, for more general, possibly non-concave, Arrow-Debreu
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economies, I will develop two polynomial-time merit function methods that compute a

solution satisfying the necessary conditions for an Arrow-Debreu equilibrium.

8.2 Motivation

Walrasian equilibrium (Arrow and Debreu, 1954; Walras, 1896), first studied by French

economist Léon Walras in 1874, is a steady state of an economy—any system governed by

supply and demand (Walras, 1896). Walras assumed that, given prices, each producer in an

economy would act so as to maximize its profit, while consumers would make decisions

that maximize their preferences over their available consumption choices; all this, while

perfect competition prevails, meaning producers and consumers are unable to influence the

prices that emerge. Under these assumptions, the demand and supply of each commodity

is a function of prices, as they are a consequence of the decisions made by the producers

and consumers, having observed the prevailing prices. A Walrasian equilibrium then

corresponds to prices that solve the system of simultaneous equations with demand on one

side and supply on the other, i.e., prices at which supply meets demand. Unfortunately,

Walras did not provide conditions that guarantee the existence of such a solution, and the

question of whether such prices exist remained open until Arrow and Debreu’s rigorous

analysis of Walrasian equilibrium in their model of a competitive economy in the middle of

last century (Arrow and Debreu, 1954).

The Arrow-Debreu model comprises a set of commodities; a set of firms, each deciding what

quantity of each commodity to supply; and a set of consumers, each choosing a quantity of

each commodity to demand in exchange for their endowment (Arrow and Debreu, 1954).

Arrow and Debreu define an Arrow-Debreu equilibrium as a collection of consumptions,

one per consumer, a collection of productions, one per firm, and a collection of prices, one

per commodity, such that fixing equilibrium prices: (1) no consumer can increase their

utility by deviating to an alternative affordable consumption, (2) no firm can increase profit

by deviating to another production in their production set, and (3) the aggregate demand

for each commodity (i.e., the sum of the commodity’s consumption across all consumers)
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does not exceed to its aggregate supply (i.e., the sum of the commodity’s production

and endowment across firms and consumers, respectively), while the total value of the

aggregate demand is equal to the total value of the aggregate supply, i.e., Walras’ law holds.

That is, an Arrow-Debreu equilibrium is a tuple that comprises a Walrasian equilibrium,

and the associated utility-maximizing consumptions and profit-maximizing productions.

Arrow and Debreu proceeded to show that their competitive economy could be seen as an

abstract economy, which today is better known as a pseudo-game (Arrow and Debreu,

1954; Facchinei and Kanzow, 2010a). A pseudo-game is a generalization of a game in

which the actions taken by each player impact not only the other players’ payoffs, as in

games, but also their set of permissible actions. Pseudo-games generalize games, and hence

are even more widely applicable. Some recently studied applications include adversarial

classification (Bruckner et al., 2012; Bruckner and Scheffer, 2009), energy resource allocation

(Hobbs and Pang, 2007; Jing-Yuan and Smeers, 1999), environmental protection (Breton

et al., 2006; Krawczyk, 2005), cloud computing (Ardagna et al., 2017; 2011), ride sharing

services ((Jeff) Ban et al., 2019), transportation (Stein and Sudermann-Merx, 2018), and

wireless and network communication (Han et al., 2011; Pang et al., 2008).

Arrow and Debreu proposed generalized Nash equilibrium as the solution concept for

this model, an action profile from which no player can improve their payoff by unilaterally

deviating to another action in the space of permissible actions determined by the actions

of other players. Arrow and Debreu further showed that any competitive economy could

be represented as a pseudo-game inhabited by a fictional auctioneer, who sets prices so

as to buy and resell commodities at a profit, as well as consumers and producers, who

respectively, choose utility-maximizing consumptions of commodities in the budget sets

determined by the prices set by the auctioneer, and profit-maximizing productions at the

prices set by the auctioneer. The elegance of the reduction from competitive economies

to pseudo-games is rooted in a simple observation: the set of Arrow-Debreu equilibria

of a competitive economy is equal to the set of generalized Nash equilibria of the associ-
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ated pseudo-game, implying the existence of Arrow-Debreu equilibrium in competitive

economies (and hence, Walrasian equilibrium in Walrasian economies as a corollary of the

existence of generalized Nash equilibria in pseudo-games, whose proof is a straightforward

generalization of Nash’s proof for the existence of Nash equilibria (Nash, 1950b).1

Following Arrow and Debreu’s seminal existence result, the literature turned its attention

to questions of 1. (economic) efficiency, i.e., under what assumptions are Arrow-Debreu

equilibria Pareto-optimal? (Arrow, 1951a;b; Arrow and Nerlove, 1958; Arrow and Hurwicz,

1958; Balasko, 1975; Debreu, 1951a); 2. uniqueness, i.e., under what assumptions are Arrow-

Debreu equilibria unique? (Dierker, 1982; Pearce and Wise, 1973); 3. stability, i.e., under

what conditions can a competitive economy settle into an Arrow-Debreu equilibrium?

(Hahn, 1958; Balasko, 1975; Arrow and Hurwicz, 1958; Cole and Fleischer, 2008; Cheung

et al., 2018; 2013; Goktas et al., 2023c), and 4. efficient computation, i.e., under what

conditions can an Arrow-Debreu equilibrium be computed efficiently? (Jain et al., 2005;

Codenotti et al., 2005; 2006; Chen and Teng, 2009).

In this part of the thesis, we seek to provide an answer to the latter two questions by

introducing a family of algorithms to compute a generalized Nash equilibrium in pseudo-

games. Work in this direction is progressing; see, for example, (Facchinei et al., 2009;

Facchinei and Kanzow, 2010a; Facchinei and Sagratella, 2011; Paccagnan et al., 2016; Yi and

Pavel, 2017; Couzoudis and Renner, 2013; Dreves, 2017; Von Heusinger and Kanzow, 2009;

Tatarenko and Kamgarpour, 2018; Dreves and Sudermann-Merx, 2016; Von Heusinger et al.,

2012; Izmailov and Solodov, 2014; Fischer et al., 2016; Pang and Fukushima, 2005; Facchinei

and Lampariello, 2011; Fukushima, 2011; Kanzow, 2016; Kanzow and Steck, 2016; 2018; Ba

and Pang, 2020). Nonetheless, there are still few, if any (Jordan et al., 2022), GNE-finding

algorithms with computational guarantees, even for restricted classes of pseudo-games.

1McKenzie (1959) showed the existence of Walrasian equilibrium independently, but concurrently. Much
of his work, however, has gone unrecognized perhaps because his proof technique does not depend on this
fundamental relationship between competitive and abstract economies / pseudo-games.
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8.3 Contributions

8.3.1 Pseudo-Games

In Chapter 9, I advance the study of pseudo-games by refining their solution concepts and

analyzing their computational complexity. First, I re-establish the existence of variational

equilibrium in quasiconcave pseudo-games with jointly convex constraints (Theorem 9.2.2).

I then introduce the notion of first-order variational equilibrium, which I show exists in a

broader class of pseudo-games—namely, smooth games with jointly convex constraints

(Theorem 9.5.2). Next, I establish an equivalence between (first-order) variational equi-

libria of pseudo-games and strong solutions of variational inequalities (Lemma 9.4.1 and

Lemma 9.6.1). This allows me to define a new class of pseudo-games—variationally stable

pseudo-games with jointly convex constraints—for which a first-order variational equilib-

rium can be computed in polynomial time via a novel uncoupled learning dynamic called

the mirror extragradient learning dynamics (Theorem 9.6.1). In the special case where the

pseudo-game is also concave, this result extends to the computation of variational equilib-

rium in polynomial time via these learning dynamics (Theorem 9.4.1). To the best of my

knowledge, this result is the broadest of its kind in the literature. Finally, for more general

pseudo-games with jointly convex constraints that are not necessarily variationally stable, I

develop two polynomial-time globally convergent merit function methods that compute a

solution satisfying the necessary conditions for a variational equilibrium (Theorem 9.4.3

and Theorem 9.6.2).

8.3.2 Arrow-Debreu Economies

In Chapter 10, I provide novel mathematical characterizations of Arrow-Debreu equilibrium

in Arrow-Debreu economies. First, I re-establish that the set of Arrow-Debreu equilibria

of any quasiconcave Arrow-Debreu economy coincides with the set of generalized Nash

equilibria of the corresponding Arrow-Debreu pseudo-game (Lemma 10.2.1). However, as

the Arrow-Debreu pseudo-game characterization is intractable, I introduce an alternative
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characterization: the set of Arrow-Debreu equilibria of any concave pure exchange economy

corresponds to the set of generalized Nash equilibria of the trading post pseudo-game

(Lemma 10.3.2), which is a variationally stable pseudoconcave pseudo-game with jointly

convex constraints. I then apply the mirror extragradient learning dynamics to solve this

pseudo-game, leading to a market dynamic I call mirror extratrade dynamics. While the

trading post pseudo-game is not concave, I show that it is pseudoconcave, implying that

an approximate first-order variational equilibrium can be computed in polynomial time.

Moreover, asymptotically, the algorithm converges to a variational equilibrium of the

trading post pseudo-game—and thus to an Arrow-Debreu equilibrium of the associated

concave pure exchange economy (Theorem 10.3.1). Finally, for more general, possibly non-

concave, Arrow-Debreu economies, I develop two polynomial-time globally convergent

merit function methods that compute a solution satisfying the necessary conditions for an

Arrow-Debreu equilibrium (Theorem 10.4.1 and Theorem 10.4.2).

My results on the computation of Arrow-Debreu equilibrium do not contradict any known

PPAD-hardness results about Arrow-Debreu economies. The reason for this is, the approx-

imate equilibria of the trading post pseudo-game do not coincide with the approximate

competitive equilibria of an Arrow-Debreu economy. In other words, under mild conti-

nuity and smoothness assumptions, I have established polynomial-time convergence to

an alternative solution concept in Arrow-Debreu economies; yet, this alternative solution

concept is meaningful, in the sense that it is encountered en route to computing an exact

Arrow-Debreu equilibrium, which the method finds asymptotically! This result supports a

recent research direction proposed by Costis Daskalakis (Daskalakis, 2022), where he advo-

cates for the design of meaningful polynomial-time computable solutions to non-concave

games.
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Chapter 9

Pseudo-games

9.1 Background

A pseudo-game (Arrow and Debreu, 1954) (n, l,A, g,u), denoted (A, g,u) when n and

l are clear from context, comprises n ∈ N+ players, each player i ∈ [n] of which takes

an action ai ∈ Ai from its action space Ai. An ordered tuple of per-player actions a
.
=

(a1, . . . ,an) ∈ A is called an action profile, where we define A .
=×i∈[n]Ai ⊂ Rnm to be

the space of action profiles. We denote any action profile a ∈ A where the ith player’s

action is removed by a−i ∈ A−i, where A−i
.
=×i′ ̸=iAi′ ⊂ R(n−1)m . Additionally, we use

the notation (a′
i,a−i) ∈ A to denote the action profile a ∈ A, where the ith player’s action

is replaced by the action ai ∈ Ai.

Each player i simultaneously chooses a feasible action from the set Xi(a−i) = {ai ∈

Ai | gic(ai,a−i) ≥ 0, for all c ∈ [l]}, determined by the actions a−i ∈ A−i of the other

players, where gic : A → Rl is the action constraint function, l is the number of constraints,

and Xi : A−i ⇒ Ai is the feasible action correspondence. We denote the product of

these feasible action correspondences by X (a) =×i∈[n]Xi(a−i), and define the space of

feasible action profiles X ∗ .
= {a ∈ A | a ∈ X (a)}. Once players have taken a feasible

action a ∈ X (a), each player i receives a payoff ui(a) according to their payoff function

ui : A → R. The payoff profile function u(a) = (ui(a))i∈[n].

222



9.2 Global Solution Concepts and Existence

9.2.1 Generalized Nash Equilibrium and Variational Equilibrium

The canonical solution concept for a pseudo-game is the generalized Nash equilibrium

(GNE).

Definition 9.2.1 [Generalized Nash equilibrium].

Given ε ≥ 0, an ε-generalized Nash equilibrium (GNE) is an action profile a∗ ∈ X (a∗) s.t.

for all i ∈ [n] and ai ∈ Xi(a∗
−i):

ui(a
∗) ≥ ui(ai,a∗

−i)− ε .

A 0-GNE is simply called a generalized Nash equilibrium (GNE).

The GNE computation problem can succinctly be written as solving the following n simul-

taneous quasi-optimization1 problems:

∀i ∈ [n], max
ai∈Xi(a−i)

ui(ai,a−i)

An important refinement of GNE is the variational equilibrium (VE):

Definition 9.2.2 [Variational equilibrium].

Given ε ≥ 0, a ε-variational equilibrium (VE) is an action profile a∗ ∈ X (a∗) s.t. for all

action profiles a ∈ X ∗: ∑
i∈[n]

[
ui(ai,a

∗
−i)− ui(a∗)

]
≤ ε .

A 0-VE is simply called a variational equilibrium (VE).

An important class of pseudo-games are those which are unconstrained, more commonly

known as games.

Definition 9.2.3 [Games and Nash equilibrium].

A game (Nash, 1950b) (n,u,A), denoted (u,A) when n is clear from context, is a pseudo-
1A quasi-optimization problem is a computational problem which consists of finding a solution which is 1)

a fixed point of a constraint correspondence, 2) a maximizer of the objective over the set of all feasible variables
defined by the constraint correspondence evaluated at the solution.
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game (n, l,A, g,u), where l .= 0 and g = ∅, i.e., the pseudo-game is unconstrained and

there is no constraint function.

An ε-generalized Nash equilibrium of a game is simply called an ε-Nash equilibrium (NE).

A 0-Nash equilibrium is simply called a Nash equilibrium.

Similar to the GNE computation problem, the NE computation problem for a game (A,u)

can be succinctly expressed the following simultaneous optimization problem:

∀i ∈ [n], max
ai∈Ai

ui(ai,a−i)

Remark 9.2.1 [Relationship between GNE, VE and NE].

While in general, the set of VE is a subset of the set of GNE in pseudo-games, the set of GNE

is equal to the set of VE in games, since X ∗ = A. The algorithms we provide in this thesis

are relevant to VEs in pseudo-games; however, due to the aforementioned relationship

between solution concepts, they imply computational results for GNE in pseudo-games

where X ∗ = A and for NE in games.

9.2.2 Quasiconcave Pseudo-Games

With a definition of our solution concepts in hand, we now describe the classes of games in

which they are guaranteed to exist. The canonical class of pseudo-games in which a GNE is

guaranteed to exist is the class of quasiconcave games. Related and of greater interest in

the computational literature is the class of concave pseudo-games, which is a strict subset

of the class of quasiconcave pseudo-games.

Definition 9.2.4 [Quasiconcave pseudo-games].

A quasiconcave (respectively, concave) pseudo-game is a pseudo-game (A, g,u), where

for all players i ∈ [n]:

[Continuous payoffs] ui is continuous

[(Quasi)concave payoffs] ai 7→ ui(ai,a−i) is quasiconcave (respectively, concave) for

all a−i ∈ A−i
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[Convex constraints] X−i is continuous, non-empty-, compact-, and convex-valued

[Convex action space] Ai is non-empty, compact, and convex

Remark 9.2.2 [Convex constraints].

The third condition in the above definition (i.e., the convex constraints condition) can

be expressed in terms of the action constraint function g , assuming g is continuous and

satisfies Slater’s condition (as defined in Definition 9.2.6); see the end of Section 2.9 for

details.

The importance of concave pseudo-games is due to a seminal result of Arrow and Debreu

(1954), which established that a GNE is guaranteed to exist in all quasiconcave pseudo-

games. This proof of existence relies on a fixed-point argument, which we provide a short

version of here for completeness.

Theorem 9.2.1 [Lemma on abstract economies (Lemma 2.5 of Arrow and Debreu (1954)].

A GNE is guaranteed to exist in all quasiconcave pseudo-games.

Proof of Theorem 9.2.1

Define the best-response correspondence of the pseudo-game as: BR(a)
.
=

×i∈[n] argmaxa′
i∈Xi(a−i)

ui(a
′
i,a−i). Now, consider any fixed point a∗ ∈ BR(a∗)

of the best-response correspondence. Then, for all players i ∈ [n], we have:

a∗
i ∈ argmax

a′
i∈Xi(a

∗
−i)
ui(a

′
i,a

∗
−i)

That is, a∗ is a GNE. Now, by the maximum theorem (Berge, 1997), in quasiconcave

games, the best-response correspondence is guaranteed to be upper-hemicontinuous,

non-empty-, compact-, and convex-valued. Hence, the best-response correspon-

dence satisfies the assumptions of the Kakutani-Glicksberg fixed point theorem

(Theorem 2.4.1), and so a fixed point, and thus a GNE, exists.

Another important class of pseudo-games is the class of pseudo-games with jointly convex

constraints.
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Definition 9.2.5 [Jointly convex constraints].

A pseudo-game (A, g,u) is said to have jointly convex constraints iff:

[Non-emptiness] there exists a ∈ A s.t. g(a) ≥ 0 (i.e., X ∗ is non-empty)

[Compactness] a 7→ g(a) is continuous (i.e., X ∗ is compact)

[Convexity] for all players i ∈ [n], and constraints c ∈ [l] a 7→ gic(a) is quasicon-

cave (i.e., X ∗ is convex)

Joint convexity of constraints is important as a VE is guaranteed to exist in all quasiconcave

pseudo-games with jointly convex constraints. The proof of existence of VE was first

provided by Rosen (1965). Analogous to the proof of existence of GNE, Rosen applies a

fixed-point argument to a suitable best-response correspondence. We provide here a brief

proof of existence and refer the reader to Facchinei and Kanzow (2010a) for additional

context.

Theorem 9.2.2 [Theorem 1 of Rosen (1965)].

A VE is guaranteed to exist in all quasiconcave pseudo-games with jointly convex con-

straints.

Proof of Theorem 9.2.1

Define the VE best-response correspondence as: VBR(a)
.
=

argmaxa′
i∈X ∗

∑
i∈[n] ui(a

′
i,a−i). Now, consider any fixed point a∗ ∈ VBR(a∗)

of the VE best-response correspondence. Then, for all action profiles a ∈ X ∗, and

players i ∈ [n], we have: ∑
i∈[n]

[
ui(ai,a

∗
−i)− ui(a∗)

]
≤ 0

That is, a∗ is a VE. Now, by the maximum theorem (Berge, 1997), in quasiconcave

games with jointly convex constraints, the VE best-response correspondence is

guaranteed to be upper-hemicontinuous, non-empty-, compact-, and convex-valued.

Hence, the best-response correspondence satisfies the assumptions of the Kakutani-
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Glicksberg fixed point theorem (Theorem 2.4.1), and so a fixed point, and thus a VE,

exists.

9.2.3 Nash Equilibrium and Generalized Nash Equilibrium Equivalence

While pseudo-games are a more practical modeling framework than games for mathe-

matical analysis, for a large number of pseudo-games, the two models are equivalent.

Excluding the rare cases where projection onto a constraint set can be computed in closed

form, solution methods for constrained optimization problems often require solving an

unconstrained penalized optimization problem. Borrowing this idea from optimization,

for a large class of pseudo-games, it is possible to achieve a reduction from any n-player

pseudo-game to a 2n-player game, under the following standard constraint qualification.

Definition 9.2.6 [Slater’s condition].

A pseudo-game (A, g,u) is said to satisfy Slater’s condition iff for all i ∈ [n], c ∈ [l], and

a−i ∈ A−i, there exists a Slater vector ãi ∈ relint(Ai) s.t.:

(Concave constraint function) ai 7→ gic(ai,a−i) is concave

(Weak Slater) if ai 7→ gic(ai,a−i) is affine, then gic(ãi,a−i) ≥ 0

(Strong slater) otherwise, gic(ãi,a−i) > 0

The following theorem shows that for any pseudo-game (A, g,u) that satisfies Slater’s

condition computing a GNE problem can be reduced to computing a NE, i.e., solving the

following system of simultaneous penalized optimization problems:

∀i ∈ [n], max
ai∈Ai

ui(ai,a−i) +
〈
λi, gi(ai,a−i)

〉
∀i ∈ [n], min

λi∈Rl
+

ui(ai,a−i) +
〈
λi, gi(ai,a−i)

〉
Note that in the above formulation, the objectives in the minimization problems should be

interpreted as negated payoffs in the game.

Theorem 9.2.3 [Pseudo-game to game reduction].

Consider a pseudo-game (A, g,u) that satisfies Slater’s condition. Define the game

(2n,A′,u′), where for all i ∈ [2n]:
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(Action space) A′
i
.
=

 Ai if i ∈ [n]

Rl+ otherwise

(Payoffs) u′i(a,λ)
.
=

 ui(a) + ⟨λi, gi(a)⟩ if i ∈ [n]

−ui−n(a)−
〈
λi, gi−n(a)

〉
otherwise

Then, (a∗,λ∗) ∈ A × Rl+ is a NE of (2n,A′,u′) iff a∗ is a GNE of (A, g,u).

Proof

( =⇒ ): Let (a∗,λ∗) ∈ A × Rl+ be a NE of (2n,A′,u′). Then, for all players i ∈ [n],

(a∗
i ,λ

∗
i ) is saddle point (i.e., NE) of the following min-max optimization problem:

max
ai∈Ai

min
λ∈Rl

+

ui(ai,a
∗
−i) +

〈
λi, gi(ai,a

∗
−i)
〉

Hence, by the KKT theorem (Kuhn and Tucker, 1951), for all players i ∈ [n], a∗
i is a

solution of the optimization problem:

max
ai∈Xi(a−i)

ui(ai,a
∗
−i)

That is, a∗ is a GNE of (A, g,u).

(⇐= ): Let a∗ ∈ X (a∗) be a GNE of (A, g,u). That is, for all players i ∈ [n], a∗ is

a solution of:

max
ai∈Xi(a−i)

ui(ai,a
∗
−i)

Since Slater’s condition is satisfied, by the KKT theorem (Kuhn and Tucker, 1951),

for all players i ∈ [n], there exists λ∗
i ∈ Rl+ s.t. (a∗

i ,λ
∗
i ) is a solution of the following

Langrangian saddle-point problem:

max
ai∈Ai

min
λ∈Rl

+

ui(ai,a
∗
−i) +

〈
λi, gi(ai,a

∗
−i)
〉

That is, (a∗,λ∗) ∈ A × Rl+ is a NE of (2n,A′,u′).

Remark 9.2.3 [Boundedness of KKT multipliers].

We note that under Slater’s condition, any KKT multiplier λ∗ associated with the NE
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(a∗,λ∗) ∈ A ×Rnl+ of the game (2n,A′,u′) is necessarily bounded. In particular, by Lemma

3 of Nedic and Ozdaglar (2009), we can define a a non-empty, compact, convex set Λ ⊆ Rnl+ ,

whose diameter depends on the value of the payoff functions of the players evaluated at

the Slater vector of the game, which can be shown to contain the optimal KKT multipliers

associated with the NE (a∗,λ∗) ∈ A × Rnl+ of the game (2n,A′,u′).

With this reduction in hand, we will for the rest of this chapter focus on the computation of

VE. Nevertheless, readers interested in applying the algorithms provided in this thesis can

use the equivalence provided by the above theorem to compute a GNE in pseudo-games

for which a VE does not exist.
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9.3 Algorithms for Pseudo-Games

9.3.1 Computational model

With the question of existence answered, we now turn our attention to the computation

of VE, and thus GNE (respectively, NE), in concave pseudo-games (respectively, games).

While a GNE is guaranteed to exist in quasiconcave pseudo-games, we will restrict our

attention to concave pseudo-games as the computation of an ε-NE even in single player

quasiconcave games (i.e., quasiconcave optimization) is known to be NP-hard (Vavasis,

1995).

Algorithms for the computation of GNE, VE, and NE can be categorized into two main

categories, decentralized algorithms, called uncoupled learning dynamics, in which each

player employs a learning algorithm independently from the others, and centralized

algorithms, which aim to compute an equilibrium without any restrictions (e.g., by a center,

rather than by the players themselves).

Definition 9.3.1 [kth-order learning dynamics].

Given some k ∈ N++, a pseudo-game (A, g,u) for which the derivatives {∇ju}k−1
j=1 are

well defined, and an initial iterate a(0) ∈ A, a kth-order learning dynamic π consists of an

update function that generates the sequence of iterates {a(t)}t given by: for all t = 0, 1, . . .,

a(t+1) .= π

(
t⋃
i=0

(a(i), {∇ju(a(i))}k−1
j=0)

)

The most prominent class of kth-order learning dynamics in the literature on equilibrium

computation, are special class of first-order learning dynamics for games called uncou-

pled learning dynamics (Hart and Mas-Colell, 2003) (for a recent survey, see for instance,

Golowich et al. (2020a)).

Definition 9.3.2 [Uncoupled learning dynamics for games].

Given a game (A,u), and an initial action profile a ∈ A, an (first-order) uncoupled

learning dynamic (Hart and Mas-Colell, 2003) π = (π1, . . . ,πn) consists of an update

function πi :
⋃
τ≥1(Ai×R×A∗

i )→ Ai for each player i ∈ [n], which generates the sequence
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of actions {a(t)}t given by: for all t = 0, 1, . . .,

a
(t+1)
i

.
= πi

(
t⋃

k=0

(a
(t)
i , ui(a

(t)),∇ai
ui(a

(t)))

)

Remark 9.3.1 [Uncoupled Learning Dynamics in Games and Pseudo-games].

Uncoupled learning dynamics in games can be understood as players playing the game

repeatedly, and updating their action at each round based on the observations in prior

rounds without coordinating with other players, thus the “uncoupled” terminology. By the

constrained nature of pseudo-games, it is in general inappropriate to consider uncoupled

learning dynamics, since players are restricted to playing actions that are feasible w.r.t. one

another’s during repeated play of the pseudo-game.

As a remedy, one can generalize the notion of uncoupled learning dynamics for pseudo-

games by introducing an “arbiter” who collects all players’ action updates, and then

projects them back onto the space of feasible action profiles X ∗. To avoid introducing

heavy notation, we will not develop such machinery here; we simply note that the mirror

extragradient learning dynamics we study for the computation of VE can be seen as such a

type of an uncoupled learning dynamics. Further justifying this generalized definition, we

note that when these first-order learning dynamics are instead applied to games, as we will

show, the arising dynamics correspond to uncoupled learning dynamics. As a result, we

will call a learning dynamic for pseudo-games “uncoupled” if, when applied to a game,

the learning dynamics are uncoupled.

The computational complexity results in this chapter rely on the following computational

model, which has been broadly adopted by the literature (see, for instance, Golowich et al.

(2020a)).

Definition 9.3.3 [Pseudo-Game Computational Model].

Given a pseudo-game (A, g,u) and a kth-order learning dynamic π, the computational

complexity of a kth-order learning dynamic is measured in term of the number of evalua-

tions of the functions u,∇u, . . . ,∇ku.
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Remark 9.3.2.

In line with the literature, the computational model we consider thus assumes that any

other operation, such as (Bregman) projection onto a set, accrues a constant cost.

The computational results that exist in the literature, as well as the results we will present

in this chapter, hold in the following two classes of pseudo-games.

Definition 9.3.4 [Lipschitz-Smooth Pseudo-Games].

Given a modulus of smoothness λ ≥ 0, a pseudo-game (A, g,u) is said to be λ-Lipschitz-

smooth iff for all players i ∈ [n], ∇ai
ui is λ-Lipschitz-continuous.

Definition 9.3.5 [Jointly Lipschitz-Smooth Pseudo-Games].

Given a modulus of smoothness λ ≥ 0, a jointly λ-Lipschitz-smooth pseudo-game is a

pseudo-game (A, g,u) such that for all players i ∈ [n], ui is λ-Lipschitz-smooth.

9.3.2 Related Works

Following Arrow and Debreu’s introduction of GNE, Rosen (1965) initiated the study of the

mathematical and computational properties of GNE in pseudo-games with jointly convex

constraints, proposing a projected gradient method to compute GNE. Thirty years later,

Uryas’ev and Rubinstein (1994) developed the first relaxation methods for finding GNEs,

which were improved upon in subsequent works (Krawczyk and Uryasev, 2000; Heusinger

and Kanzow, 2009). Two other types of algorithms were also introduced to the literature:

Newton-style methods (Facchinei et al., 2009; Dreves, 2017; Von Heusinger et al., 2012;

Izmailov and Solodov, 2014; Fischer et al., 2016; Dreves et al., 2013) and interior-point

potential methods (Dreves et al., 2013). Many of these approaches are based on minimizing

the exploitability of the pseudo-game, but others use variational inequalities (Facchinei

et al., 2007; Nabetani et al., 2011) and Lemke methods (Schiro et al., 2013).

More recently, novel methods that transform the problem of computing a GNE to that of

a NE were analyzed. These models take the form of either exact penalization methods,

which lift the constraints into the objective function via a penalty term (Facchinei and
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Lampariello, 2011; Fukushima, 2011; Kanzow and Steck, 2018; Ba and Pang, 2020; Facchinei

and Kanzow, 2010b), or augmented Lagrangian methods (Pang and Fukushima, 2005;

Kanzow, 2016; Kanzow and Steck, 2018; Bueno et al., 2019), which do the same, augmented

by dual Lagrangian variables. Using these methods, Jordan et al. (2022) provide the first

convergence rates to an ε-GNE in monotone (respectively, strongly monotone) pseudo-

games with jointly affine constraints in Õ(1/ε) (respectively, Õ(1/
√
ε)) iterations. These

algorithms, despite being highly efficient in theory, are numerically unstable in practice

(Jordan et al., 2022). Nearly all of the aforementioned approaches concerned pseudo-games

with jointly convex constraints.

Exploitability minimization has also been a valuable tool in multi-agent reinforcement

learning; algorithms in this literature that aim to minimize exploitability are known as

exploitability-descent algorithms. Lockhart et al. (2019) analyzed exploitability descent

in two-player, zero-sum, extensive-form games with finite action spaces. Variants of

exploitability-descent have also been combined with entropic regularization and homotopy

methods to solve for NE in large games (Gemp et al., 2021).

233



9.4 Computation of GNE

9.4.1 Uncoupled Learning Dynamics for GNE

The first type of algorithms we study for the computation of VE are uncoupled learn-

ing dynamics. For convenience, going forward, we will define the following important

operator.

Definition 9.4.1 [Pseudo-Game operator].

The pseudo-game operator associated with any pseudo-game (A, g,u) is defined as

v(a)
.
= −(∇a1

u1(a), . . . ,∇an
un(a))

We denote the ith component of v(a) as vi(a), which we note is equal to the negated

gradient −∇ai
ui(a) of the ith player’s payoff w.r.t. its own action.

Remark 9.4.1 [Generalization for subdifferentiable pseudo-games].

In the above definition, for clarity it is assumed that ∇ai
ui is well-defined. However, the

definition can easily be extended to pseudo-games for which the subdifferential Dai
ui is

guaranteed to be non-empty, by defining the pseudo-game operator v as a correspondence,

now better denoted V (a) .
= −×i∈[n]Dai

ui(a). The following lemma then also directly

generalizes to such pseudo-games by replacing the VI (X ∗,v) by the VI (X ∗,V ).

Be we introduce the uncoupled learning dynamic we will study, we present the following

lemma, which uncovers a relationship between the VE of a pseudo-game and the strong

solutions of the corresponding VI.

Lemma 9.4.1 [SVI ⊂ VE in Concave Pseudo-Games].

Given a concave pseudo-game (A, g,u), any ε-strong solution of the VI (X ∗,v) is an ε-VE

of (A, g,u).
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Proof of Lemma 9.4.1

Let a∗ ∈ X ∗ be an ε-strong solution of the VI (X ∗,v). Then, for all a ∈ X ∗,

ε ≥ ⟨v(a∗),a∗ − a⟩

=
∑
i∈[n]

〈
−∇ai

ui(a
∗),a∗

i − ai

〉
=
∑
i∈[n]

〈
∇ai

ui(a
∗),ai − a∗

i

〉
≥
∑
i∈[n]

ui(ai,a
∗
−i)− ui(a∗)

where the last line follows by concavity. Hence, a∗ is an ε-VE of (A, g,u).

In games, X ∗ = A, which implies that the set of VE is equal to the set of GNE, and hence

the set of NE. Thus, we have the following corollary of Lemma 9.4.1.

Corollary 9.4.1 [SVI ⊆ VE in Concave Games].

Given a concave game (A,u), any ε-strong solution of the VI (X ∗,v) is an ε-NE of (A,u).

With this lemma in hand, we can now apply the mirror extragradient method to solve the VI

(X ∗,v) associated with any concave pseudo-game (A,u) giving us the mirror extragradient

learning dynamics (Algorithm 7). Here, we remark that when the pseudo-game considered

is in fact a game, then the mirror extragradient method can be seen as an uncoupled

learning dynamic.

Algorithm 7 Mirror Extragradient Learning Dyanmics

Input: A, g,u, τ, η, h,a(0)

Output: {a(t),a(t+0.5)}t∈[τ]

1: for t = 1, . . . , τ do

2: ∀i ∈ [n], a
(t+0.5)
i ← argmax

ai∈Ai

{〈
∇ai

ui(a
(t)),ai − a

(t)
i

〉
− 1

2ηdivh(ai,a
(t)
i )
}

3: ∀i ∈ [n],a
(t+1)
i ← argmax

ai∈Ai

{〈
∇ai

ui(a
(t+0.5)),ai − a

(t)
i

〉
− 1

2ηdivh(ai,a
(t)
i )
}

return {a(t),a(t+0.5)}t∈[τ]
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Remark 9.4.2 [Mirror Extragradient Learning Dynamics Are Uncoupled].

It turns out that the mirror extragradient learning dynamics (Algorithm 7), when applied

to a game (A,u), can be seen as an uncoupled learning dynamic.

To see this, suppose that the mirror extragradient algorithm applied to (A,v) generates

the sequence of action profiles {a′(t),a′(t+0.5)}t∈[0,τ]. Now, for notational convenience, map

the indices of the sequence through the transformation t 7→ 2t to obtain the sequence

{a(t)}t∈[0,2τ]. The transformed sequence of actions can now be interpreted as an uncoupled

learning dynamic where the update function for each player i ∈ [n] and any t ∈ N+ is given

by:

πi

(
t⋃

k=0

(a
(t)
i , ui(a

(t)),∇ai
ui(a

(t)))

)

.
=


argmax
ai∈Ai

{〈
∇ai

ui(a
(t)),ai − a

(t)
i

〉
− 1

2ηdivh(ai,a
(t)
i )
}

if t is even

argmax
ai∈Ai

{〈
∇ai

ui(a
(t)),ai − a

(t−1)
i

〉
− 1

2ηdivh(ai,a
(t−1)
i )

}
if t is odd

.

We note that the argmin is singleton-valued when the kernel function h is strictly convex,

and hence we interpret the argmin as the item in the singleton output. The arising update

rule then dictates that on even time steps all players take a step of mirror ascent using their

action the current time-step, while on odd time-steps, players take a step of mirror ascent

using their action from the previous time-step.

With this in mind, we now introduce the class of variationally stable games for which

we can prove the convergence of the mirror extragradient learning dynamics. While a

definition of variational stability was first introduced by Zhou et al. (2017) for games,

the definition we provide here is much weaker.2 While Zhou et al. (2017) proved the

asymptotic convergence of mirror ascent dynamics with decreasing step size in games

when the kernel function h satisfies a set of regularity conditions, it is not clear if there

exists a kernel function which satisfies these conditions and whether this convergence
2When generalized for pseudo-games, per Zhou et al., a pseudo-game (A, g ,u) is said to be variationally

stable if its set of VE is equal to the set of weak solutions MVI (X ∗,v) of the VI (X ∗,v). In contrast, to
Zhou et al.’s definition, we only require the set of weak solutions of the VI (X ∗,v) to be non-empty, hence
generalizing Zhou et al.’s definition.
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implies polynomial-time computation of ε-NE in such games (or more broadly of ε-VE in

pseudo-games). In contrast, here, we provide a non-asymptotic convergence rate under

very mild assumptions on the kernel function h, namely strong convexity, which implies

the polynomial-time computation of ε-VE in variationally stable pseudo-games.

Definition 9.4.2 [Variationally Stable Pseudo-Games].

A pseudo-game (A, g,u) is said to be variationally stable iff there exists a∗ ∈ X ∗ s.t. for

all b ∈ X ∗: ∑
i∈[n]

〈
∇ai

ui(b),a
∗
i − bi

〉
≥ 0

In other words, the pseudo-game is variationally stable iff the set of weak solutions

MVI (X ∗,v) of the VI (X ∗,v) is non-empty.

Remark 9.4.3 [Interpreting variational stability in concave pseudo-games].

In concave games pseudo-games, by concavity, we have, for all i ∈ [n], and a, b ∈ A,

ui(ai, b−i)− ui(b) ≤
〈
∇ai

ui(b),ai − bi

〉
Hence, the variational stability condition is satisfied if there exists a∗ ∈ X ∗ s.t. for all i ∈ [n]

and b ∈ X ∗,

ui(a
∗
i , b−i)− ui(b) ≥ 0

In other words, variational stability in concave pseudo-games can be ensured if for all

players i ∈ [n], there exists an action a∗
i ∈ X ∗ that weakly increases its payoff when the

player i unilaterally deviates from the action profile b.

The class of variationally stable concave pseudo-games contains a number of well-studied

pseudo-games games such as monotone pseudo-games with jointly convex constraints.3

Definition 9.4.3 [Monotone pseudo-games].

A pseudo-game (A, g,u) is said to be monotone iff the pseudo-game operator v is mono-
3Note that a pseudo-game being monotone implies that for all i ∈ [n] and a−i ∈ A−i, ai 7→ ui(ai,a−i) is

concave. It does not, however, imply continuity of ui, nor the non-emptiness, compactness, nor convexity of
X ∗, all of which are necessary for the variational stability condition to hold.
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tone, i.e., for all a, b ∈ A,∑
i∈[n]

〈
∇ai

ui(a)−∇ai
ui(b),ai − bi

〉
≤ 0

The class of variationally stable concave pseudo-games also contains the larger but less

well-studied class of pseudomonotone and quasimonotone concave pseudo-games with

jointly convex constraints (see, for instance, Section 2.3.2 of Huang and Zhang (2023)):

Definition 9.4.4 [Pseudomonotone games].

A pseudo-game (A, g,u) is said to be pseudomonotone iff the pseudo-game operator v is

pseudomonotone, i.e., for all a, b ∈ A,∑
i∈[n]

〈
∇ai

ui(a), bi − ai

〉
≤ 0 =⇒

∑
i∈[n]

〈
∇ai

ui(b), bi − ai

〉
≤ 0

Definition 9.4.5 [Quasimonotone Pseudo-Games].

A pseudo-game (A, g,u) is said to be quasimonotone iff the pseudo-game operator is

quasimonotone v , i.e., for all a, b ∈ A,∑
i∈[n]

〈
∇ai

ui(a), bi − ai

〉
< 0 =⇒

∑
i∈[n]

〈
∇ai

ui(b), bi − ai

〉
≤ 0

With these definitions in hand, we can obtain a non-asymptotic convergence rate for

the mirror extragradient learning dynamics in variationally stable pseudo-games, as an

application of Theorem 4.3.1 in conjunction with Lemma 9.4.1.

Theorem 9.4.1 [Convergence of Mirror Extragradient Learning Dynamics].

Let (A, g,u) be a variationally stable and λ-Lipschitz-smooth concave pseudo-game

with jointly convex constraints and h a 1-strongly-convex and κ-Lipschitz-smooth ker-

nel function. Consider the mirror extragradient learning dynamics (Algorithm 7) run

with the pseudo-game (A, g,u), the kernel function h, a step size η ∈
(
0, 1√

2λ

]
, and

any time horizon τ ∈ N. The output sequence {x(t+0.5),x(t+1)}t satisfies: If a
(τ)
best ∈

argminx(k+0.5):k=0,...,τ divh(a
(k+0.5),a(k)), then for some τ ∈ O(1/ε2), a

(τ)
best is an ε-VE of

(A, g,u). In addition, the iterates asymptotically converge to a VE a∗ ∈ X ∗ of (A, g,u), i.e.,

limt→∞ a(t+0.5) = limt→∞ a(t) = a∗.
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Proof of Theorem 9.4.1

By Lemma 9.4.1, we know that any ε-strong solution of the VI (X ∗,v) is a ε-VE of

the pseudo-game (A, g,u). Now, note that by the variational stability assumption,

the set of weak solutions of (X ∗,v) is non-empty. In addition, as (A, g,u) is a jointly

λ-Lipschitz-smooth concave pseudo-game with jointly convex constraints, (X ∗,v) is

λ-Lipschitz continuous. Hence, the assumptions of Theorem 4.3.1 hold, giving us

the result.

With this theorem in hand, so remarks are in order.

Remark 9.4.4 [Contributions to the literature].

To the best of our knowledge, Theorem 9.4.1 is the broadest polynomial-time computa-

tion result for ε-VE in pseudo-games, as well as ε-NE in games. It is also the first and

only existing non-asymptotic convergence analysis of the mirror extragradient learning

dynamics.

We note that for the choice of kernel function h .
= ∥·∥2 (i.e., the Euclidean squared norm),

while Huang and Zhang (2023) do not explicitly prove the above result, it could be inferred

from their Theorem 3.16, when taken in conjuction with Lemma 9.4.1. As such, in this

specific setting, our contribution can be seen as identifying Lemma 9.4.1 as applicable to

Huang and Zhang’s result for pseudo-games.

Remark 9.4.5 [Local convergence to ε-VE].

The above finite-time global convergence result to ε-VE, can be extended to a finite-time

local convergence result to ε-VE by instead applying Theorem 4.3.2 with the assumption

that the initial iterate of the mirror extragradient learning dynamics starts close enough to

a local weak solution of (X ∗,v). To the best of our knowledge this is the first finite-time

local convergence result to ε-VE in pseudo-games, as well as the first finite-time local

convergence result to ε-NE in games.
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9.4.2 Merit Function Methods for GNE

We now turn our attention to methods with computational guarantees beyond variationally

stable pseudo-games. In general concave pseudo-games, it is not possible for uncoupled

learning dynamics to converge a VE (see, Theorem 1 of Hart and Mas-Colell (2003)). To

remedy this non-convergence issue, we will in this section consider consider first-order

coupled learning dynamics, or simply first-order learning dynamics. To derive, these first-

order learning dynamics, we will define merit functions for VE and consider methods to

minimize this merit functions.

Definition 9.4.6 [Merit functions for Pseudo-Games].

Given a pseudo-game (A, g,u). A function Ξ : X ∗ → R is said to be a merit function for

the set of VE of (A, g,u) iff

1. for all a ∈ X ∗, Ξ(a) ≥ 0

2. for any a∗ ∈ X ∗, Ξ(a∗) = 0 iff a∗ is a VE.

Our formulations start with the exploitability, or the Nikaido-Isoda function (Nikaido and

Isoda, 1955), as well as the related cumulative regret or Ky Fan function (Aubin, 2013) of a

pseudo-game.

Definition 9.4.7 [Cumulative Regret and Exploitability].

The cumulative regret (or Ky Fan function) ψ : A ×A → R between two action profiles a

and b across all players is defined as:

ψ(a, b)
.
=
∑
i∈[n]

[
ui(bi,a−i)− ui(ai,a−i)

]
The exploitability, or the Nikaido-Isoda potential function (Nikaido and Isoda, 1955),

φ : A → R of an action profile a is defined as

φ(a) = max
b∈X ∗

∑
i∈[n]

[
ui(bi,a−i)− ui(ai,a−i)

]
.

It is well known that any unexploitable action profile, i.e., a ∈ X (a) s.t. φ(a) = 0, in a

pseudo-game is a VE.
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Lemma 9.4.2 [(Flam and Ruszczynski, 1994)].

Given a pseudo-game (A, g,u), it holds that for all a ∈ X ∗, φ(a) ≥ 0. Moreover, any

action profile a ∈ X (a) with exploitability φ(a) is an φ(a)-VE. Further, any action profile

a(∗) ∈ X ∗ is a VE iff it achieves the lowerbound, i.e., φ(a∗) = 0.

This lemma tells us that we can reformulate the VE computation problem as the optimiza-

tion problem of minimizing exploitability, i.e., mina∈X ∗ φ(a). Despite this reformulation

of VE computation in terms of exploitability, no convergence rate guarantees are known

for exploitability-minimization algorithms. This unexploitability (!) of exploitability may

be due to the fact that it is not differentiable in general. The key insight that allows us

to obtain convergence guarantees is that we treat the VE problem not as a minimization

problem, but rather as a min-max optimization problem, namely:

min
a∈X ∗

φ(a) = min
a∈X ∗

max
b∈X ∗

ψ(a, b)

This problem is well understood when ψ is a convex-concave objective function (Ne-

mirovski, 2004; Korpelevich, 1976; Nedic and Ozdaglar, 2009; von Neumann, 1928). Fur-

thermore, the cumulative regret ψ is indeed convex-concave, i.e., convex in a and concave

in b, in many pseudo-games of interest: e.g., two-player zero-sum, n-player pairwise

zero-sum, and a large class of monotone and bilinear pseudo-games, as well as Cournot

oligopoly games, to name a few. For more details, see Section 2 of Flam and Ruszczynski

(1994).

Using the simple observation that every VE of a pseudo-game is the solution to a min-max

optimization problem we introduce our first algorithm (EDA; Algorithm 8), an extragradi-

ent method (Korpelevich, 1976). The algorithm works by interleaving extragradient ascent

and descent steps: at iteration t, given a(t), it ascends on ψ(a(t), ·), thereby generating a

better response b(t+1), and then it descends on ψ(·, b(t+1)), thereby decreasing exploitability.

We combine several known results about the convergence of extragradient descent methods

in min-max optimization problems to obtain the following convergence guarantees for

EDA in pseudo-games.
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Algorithm 8 Extragradient descent ascent (EDA)

Inputs: ψ, τ, η,a(0), b(0)

Outputs: (a(t), b(t),a(t+0.5), b(t+0.5))t

1: for t = 0, . . . , τ − 1 do

2: a(t+0.5) = ΠX ∗

[
a(t) − η∇aψ(a

(t), b(t))
]

3: b(t+0.5) = ΠX ∗

[
b(t) + η∇bψ(a

(t), b(t))
]

4: a(t+1) = ΠX ∗

[
a(t) − η∇aψ(a

(t+0.5), b(t+0.5))
]

5: b(t+1) = ΠX ∗

[
b(t) + η∇bψ(a

(t+0.5), b(t+0.5))
]

6: return (a(t), b(t),a(t+0.5), b(t+0.5))t

Remark 9.4.6 [From EDA to Mirror Extragradient Descent Ascent].

We note that one could more generally consider a mirror extragradient descent ascent

method, which is equivalent to running the mirror extragradient algorithm (Algorithm 3)

on the VI (X ∗ × X ∗, (∇aψ,−∇bψ)). The convergence results we provide in this section

hold for this more general algorithm by simply applying Theorem 4.3.1 and other related

theorems in the literature (e.g., Nemirovski (2004)). For simplicity, we choose to present

our results for this simpler algorithm.

Theorem 9.4.2 [Convergence of EDA].

Consider a jointly λ-Lipschitz-smooth quasiconcave pseudo-game with jointly convex-

constraints (A, g,u) with convex-concave cumulative regret ψ . Suppose that EDA (Algo-

rithm 8) is run with the cumulative regret ψ , the step size η ≤ 1
2nλ , time horizon τ ∈ N, and

initial iterates a(0), b(0) ∈ X ∗. The output sequence (a(t), b(t),a(t+0.5), b(t+0.5))t satisfies the

following: If a(τ) = 1/τ
∑T

t=1 a
(t) and a

(τ ′)
best ∈ argmin

a(k+0.5):k=0,1,...,τ ′
∥a(k+0.5) − a(k)∥, then for all

ε ≥ 0, there exists τ ∈ O (nλ/ε) and τ ′ ∈ O (nλ/ε2) s.t. a(τ) and a
(τ ′)
best are both ε-VE.
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Proof of Theorem 9.4.2

First, note that ψ is 2nλ-Lipschitz-smooth since the pseudo-game (A, g,u) is jointly

λ-Lipschitz-smooth, and ψ is the sum of n differences of λ-Lipschitz-smooth func-

tions. Additionally, since ψ is convex-concave, (X ∗×X ∗, (∇aψ,−∇bψ)) is monotone.

Further, note that any feasible action profile a∗ ∈ X ∗ is an ε-strong solution of (X ∗ ×

X ∗, (∇aψ,−∇bψ)) iff maxb∈X ∗ ψ(a∗, b)−mina∈X ∗ maxb∈X ∗ ψ(a, b) ≤ ε (see, Propo-

sition 2.2 of Nemirovski (2004)). Since a VE is guaranteed to exist under the assump-

tion of joint convexity (Theorem 9.2.2), it holds that mina∈X ∗ maxb∈X ∗ ψ(a, b) = 0.

Therefore,

ε ≥ max
b∈X ∗

ψ(a∗, b)− min
a∈X ∗

max
b∈X ∗

ψ(a, b)︸ ︷︷ ︸
=0

= max
b∈X ∗

ψ(a∗, b)

= φ(a∗)

As such, by Lemma 9.4.2, any ε-strong solution of (X ∗ × X ∗, (∇aψ,−∇bψ)) is an

ε-VE.

Hence, by Theorem 3.2 of Nemirovski (2004), for all ε ≥ 0 and τ ≥ 2nλ/ε, a(τ) is an

ε-VE.

Similarly, by Theorem 4.3.1, for all ε ≥ 0, there exists τ ′ ∈ O(nλ/ε) s.t. a(τ ′)
best is an ε-VE.

We note that EDA is an optimal algorithm for computing VE in pseudo-games with convex-

concave cumulative regret.

Remark 9.4.7 [Optimality of EDA].

The computational complexity of two-player zero-sum convex-concave games is Ω(1/ε).

Since pseudo-games with convex-concave cumulative regret are a special case, the iteration

complexity of EDA in pseudo-games with convex-concave cumulative regret is optimal.
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We also remark that this result can be extended beyond pseudo-games in which the

cumulative regret is convex-concave. We present this less general result for the sake

of simplicity, and because it answers an open question first posed by Flam and Ruszczynski

(1994), who asked whether exploitability can be minimized efficiently in pseudo-games

when ψ is convex-concave.

Remark 9.4.8 [EDA under Minty Condition].

Going beyond pseudo-games in which ψ is convex-concave, we can consider pseudo-

games in which the VI (X ∗ × X ∗, (∇aψ,−∇bψ)) satisfies the Minty condition. For such

pseudo-games, by Theorem 4.3.1, it is still possible compute an ε-VE in polynomial time:

for all ε ≥ 0, there exists τ ′ ∈ O(nλ/ε) s.t. a(τ ′)
best is an ε-VE.

Remark 9.4.9 [EDA in concave pseudo-games with jointly convex constraints].

In general, for concave pseudo-games with jointly convex constraints, while the cumulative

regret ψ is not necessarily convex-convex, it is guaranteed to be non-convex-concave.

In this more general setting, as exploitability is not differentiable, it is not possible to

show convergence to an ε-stationary point of φ. Nevertheless, it is possible to show that

extragradient descent ascent can compute an ε-stationary point of the Moreau envelope φ̃

of φ, defined as φ̃(a) .= minb∈X ∗ φ(b)+1/2nλ∥a−b∥2 inO(1/ε6) operations (see, for instance

Mahdavinia et al. (2022)).

While Remark 9.4.9 suggests that it at least possible to minimize exploitability in general

concave pseudo-games with jointly convex constraints, as ε-stationary points of φ̃ are not

directly related to ε-stationary points of φ, it seems hard to relate this convergence result

to the computation of ε-VE. Nonetheless, by exploiting the structure of cumulative regret,

we regularize it to obtain a regularized exploitability function whose set of minima is once

again equal to the set of VE.

In particular, observe the following: if a∗ ∈ argmina∈X maxb∈X ψ(a, b), then a∗ ∈

argmaxb∈X ψ(a∗, b). In other words, if a∗ is a solution to the outer minimization problem,

then it is likewise a solution to the inner maximization problem. As a result, we can penalize

244



Algorithm 9 Regularized Extragradient Descent Ascent (REDA)

Inputs: ψα, τ, η,a(0), b(0)

Outputs: (a(t), b(t),a(t+0.5), b(t+0.5))t

1: for t = 0, . . . , τ − 1 do

2: a(t+0.5) = ΠX ∗

[
a(t) − η∇aψα(a

(t), b(t))
]

3: b(t+0.5) = ΠX ∗

[
b(t) + η∇bψα(a

(t), b(t))
]

4: a(t+1) = ΠX ∗

[
a(t) − η∇aψα(a

(t+0.5), b(t+0.5))
]

5: b(t+1) = ΠX ∗

[
b(t) + η∇bψα(a

(t+0.5), b(t+0.5))
]

6: return (a(t), b(t),a(t+0.5), b(t+0.5))t

exploitability in proportion to the distance between a and b, while still ensuring that this

penalized exploitability is minimized at a VE.

We thus propose to optimize the α-regularized cumulative regret ψα : A ×A → R,

Definition 9.4.8 [Regularized Cumulative Regret and Regularized Exploitability].

Let α ≥ 0 be a regularization parameter.

The α-regularized cumulative regret of any two action profiles a, b ∈ A is defined as:

ψα(a, b)
.
= ψ(a, b)− α

2
∥a − b∥22

The α-regularized exploitability φα : A → R of any action is defined as:

φα(a)
.
= max

b∈X
ψα(a, b)

Von Heusinger and Kanzow show that an action profile a∗ has no α-regularized-

exploitability, i.e., φα(a∗) = 0, iff a∗ is a VE, for all α ≥ 0 (Theorem 3.3 of Von Heusinger

and Kanzow (2009)). With this observation in hand, we can then try to minimize the

regularized exploitability by running extragradient descent ascent on ψα, rather than ψ ,

which gives us the regularized extragradient descent ascent algorithm (Algorithm 9).

Theorem 9.4.3 [Convergence of REDA].

Consider a jointly λ-Lipschitz-smooth concave pseudo-game with jointly convex-
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constraints (A, g,u). Let α > 0 be some regularization parameter, and ψα be the α-

regularized cumulative regret associated with (A, g,u). Suppose that REDA (Algo-

rithm 9) is run with is run with the regularized cumulative regret ψα, the step size

η ≤ min{ 1
75α(2nλ+α) ,

1
4(2nλ+α)}, time horizon τ ∈ N, and initial iterates a(0), b(0) ∈

X ∗. The output sequence (a(t), b(t),a(t+0.5), b(t+0.5))t satisfies the following: If a
(τ)
best ∈

argmina(k):k=0,...,τ−1maxa∈X ∗⟨∇φα(a(k)),a(k) − a⟩, then for all ε ≥ 0, there exists τ ∈

O(1/ε2), a(τ)
best is an ε-stationary point of φα, i.e., maxa∈X ∗⟨∇φα(a

(τ)
best),a

(τ)
best − a⟩ ≤ ε.

Proof of Theorem 9.4.3

The result follows from an application of Theorem 4.2 Mahdavinia et al. (2022) by

noting the following. First, note that Theorem 4.2 is derived for min-max optimiza-

tion problems where the minimization is unconstrained, which in our application

corresponds to the optimization problem mina∈Rn×m maxb∈X ∗ ψ(a, b). Nevertheless,

as Mahdavinia et al. (2022) remark at the end of their related work section, their proof

directly generalizes to the constrained setting, with a definition of an ε-stationary

point of φα given by maxx∈X ⟨∇φα(a
(τ)
best),a

(τ)
best − a⟩ ≤ ε.

Second, for all a ∈ A, b 7→ ψα(a, b) is α is α-strongly-concave, since it is the sum of

a concave function and an α-strongly-concave function.

Finally, note that ψα is (2nλ+ α)-Lipschitz-smooth, since it the sum of n differences

of λ functions ψ , and α
2 ∥a − b∥22 which is α-Lipschitz-smooth. Hence, setting the

step size so that η ≤ min{ 1
75α(2nλ+α) ,

1
4(2nλ+α)}, the antecedant of Theorem 4.2 of

Mahdavinia et al. (2022) is satisfied, and the result follows.

With this convergence result in hand, one might wonder under what conditions ε-stationary

points of ψα coincide with ε-VE.

Remark 9.4.10 [When is an ε-stationary point of φα also an ε-VE].

Von Heusinger and Kanzow (2009) show in Theorem 3.6 that ε-stationary points of ψα
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coincide with ε-VE of (A, g,u)4, when the pseudo-game (A, g,u) satisfies the following

strict monotonicity-like condition: for all a, b s.t. a ̸= b,∑
i∈[n]

〈
∇ui(bi,a−i)−∇ui(a),a − b

〉
> 0

This condition can be translated to a more intuitive condition on u by noting that it is

satisfied when for all players i ∈ [n], a 7→ ui(a) is strictly convex.

Remark 9.4.11 [Extending Convergence to Quasiconcave Pseudo-Games].

We note that while the cumulative regret function for all a ∈ A, b 7→ ψ(a, b) is not concave

in quasiconcave pseudo-games, under the assumption that the pseudo-game is jointly

λ-Lipschitz-smooth, b 7→ ψ(a, b) is λ-weakly-concave. Hence, choosing α > λ, we can

ensure that b 7→ ψα(a, b) is strongly-concave, hence allowing us to extend Theorem 9.4.3 to

jointly λ-Lipschitz-smooth quasiconcave pseudo-games with jointly convex constraints.

Unfortunately, beyond quasiconcave pseudo-games with jointly convex constraints, a VE

is not guaranteed to exist, and as such minimizing the (regularized) exploitability is no

longer a sensible approach. Nevertheless, it is possible to show the existence of a weaker

solution concept in smooth pseudo-games, namely first-order variational equilibrium. As

such, we next turn our attention to the computation of first-order variational equilibrium.

4Von Heusinger and Kanzow (2009) show the result for 0-stationary points and 0-VE; however, their proof
directly generalizes to ε-stationary points by replacing the 0s in their proof with εs.
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9.5 Local Solution Concepts and Existence

9.5.1 First-Order and Local Generalized Nash and Variational Equilibrium

We now turn our attention to solving non-concave games. As previously mentioned,

the computation of even an ε-NE in single player quasiconcave games (i.e., quasiconcave

optimization) is known to be NP-hard (Vavasis, 1995). As such, to obtain any computational

results for efficient algorithms, we focus on local solutions.

Further, as many pseudo-games that arise in modern machine learning applications are

not quasiconcave, and as GNE are not guaranteed to exist beyond quasiconcave games,

this begs the question: how far beyond quasiconcave games can the theory of games be

extended, and what solution concepts are appropriate for such games (and, more generally,

pseudo-games)? Two intuitive solution concepts which are weaker than GNE are the

first-order generalized Nash equilibrium and the local generalized Nash equilibrium.

Definition 9.5.1 [First-Order GNE].

Given ε ≥ 0, an ε-first-order generalized Nash equilibrium (ε-first-order GNE) is an action

profile a∗ ∈ X (a∗) s.t. for all players i ∈ [n] and ai ∈ Xi(a∗
−i),〈

∂ai
ui(a

∗),ai − a∗
i

〉
≤ ε ,

for some ∂ai
ui(a

∗) ∈ Dai
ui(a

∗).

A 0-first-order GNE is simply called a first-order generalized Nash equilibrium (first-order

GNE).

Remark 9.5.1 [Interpretation of first-order GNE].

First-order GNE can be interpreted as the GNE of the pseudo-game with “linearized”

payoffs around the GNE. More precisely, for all players i ∈ [n], let ℓ a∗

i [ui](ai)
.
= ui(a

∗) +〈
∂ai

ui(a
∗),ai − a∗

i

〉
be the linearization operator around a∗ s.t. ℓ a∗

i [ui](ai) is a first-order

Taylor expansion approximation of ui(ai,a
∗
−i).

Recall that a GNE is an action profile a∗ ∈ X (a∗) s.t. for all i ∈ [n] and ai ∈ Xi(a∗
−i),

ui(a
∗) ≥ ui(ai,a∗

−i) .
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Now, suppose we replace the payoffs u in the original pseudo-game with the linearized

payoffs around a∗. Then the above definition reduces to: for all i ∈ [n] and ai ∈ Xi(a∗
−i),

ℓ
a∗

i [ui](a
∗
i ) ≥ ℓ

a∗

i [ui](ai)

⇐⇒ ui(a
∗) ≥ ui(a∗) +

〈
∂ai

ui(a
∗),ai − a∗

i

〉
⇐⇒ 0 ≥

〈
∂ai

ui(a
∗),ai − a∗

i

〉
This interpretation is key in the analysis of many general equilibrium models in modern

macroeconomics, because in most if not all models analyzed in practice, the cumulative

expected utility of the consumers is linearized before solving the model (Sargent and

Ljungqvist, 2000; Auclert et al., 2021). As such, the first-order GNE provides a theoretical

framework to understand this trick that is so prevalently used in practice.

We can similarly define a first-order analog of variational equilibrium, which is a refinement

of the first-order GNE.

Definition 9.5.2 [First-Order VE].

Given ε ≥ 0, an ε-first-order variational equilibrium (ε-first-order VE) is an action profile

a∗ ∈ X (a∗) s.t. for all a ∈ X ∗,∑
i∈[n]

〈
∂ai

ui(a
∗),ai − a∗

i

〉
≤ ε ,

for some ∂ai
ui(a

∗) ∈ Dai
ui(a

∗).

A 0-first-order VE is simply called a first-order variational equilibrium (first-order VE).

Note that the set of first-order VE of any pseudo-game is a subset of the set of first-order

GNE. An alternative to first-order GNE is local GNE.

Definition 9.5.3 [Local GNE].

Given a regret parameter ε ≥ 0, and a locality parameter δ ≥ 0, a (ε, δ)-local generalized

Nash equilibrium ((ε, δ)-local GNE) is an action profile a∗ ∈ A s.t. for all players i ∈ [n]

and ai ∈ Ai ∩ Bδ[a∗
i ],

ui(a
∗) ≥ ui(ai,a∗

−i)− ε .
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For any δ > 0, a (0, δ)-local GNE is simply called a local δ-generalized Nash equilibrium

(local δ-GNE).

Similarly, we can define a local analog of VE.

Definition 9.5.4 [Local VE].

Given a regret parameter ε ≥ 0, and a locality parameter δ ≥ 0, a (ε, δ)-local variational

equilibrium ((ε, δ)-local VE) is an action profile a∗ ∈ A s.t. for all a ∈ X ∗ ∩ Bδ[a∗],

∑
i∈[n]

ui(ai,a
∗
−i)− ui(a∗) ≤ ε .

For any δ > 0, a (0, δ)-local VE is called a local δ-variational equilibrium (local δ-VE).

Similar to their global variants, the set of local VE is a subset of the set of local GNE.

Remark 9.5.2 [First-Order NE and Local NE in Games].

In games, first-order GNE and first-order VE are equivalent, so these solution concepts are

simply called first-order Nash equilibrium (first-order NE). Similarly, the definitions of

local GNE and local VE are also equivalent, so these solution concepts are simply called

local Nash equilibrium (local NE).

9.5.2 Smooth Pseudo-Games

Unfortunately, the existence of local GNE in even very simply non-concave games cannot

be guaranteed.

Example 9.5.1 [Exact local GNE non-existence].

Consider the two player zero-sum game (2,A,u) where A .
= [−1, 1] × [−1, 1], and

u1(a1, a2) = −u2(a1, a2) = (a1 − a2)
2. At a local Nash equilibrium (a∗1, a

∗
2) ∈ A, the

max player would play a1 ̸= a2, while the min player would play a1 = a2. Hence, an exact

local NE cannot exist.
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Nevertheless for any ε, δ ≥ 0 s.t. ε ≥ 2δ2, any action profile (a∗1, a
∗
2) ∈ A s.t. a∗1 = a∗2 is an

(ε, δ)-local NE since:

max
a1∈[−1,1]∩Bδ[a∗

1 ]
u1(a1, a

∗
2) max

a2∈[−1,1]∩Bδ[a∗
2 ]
u2(a

∗
1, a2)

= max
a1∈[−1,1]∩Bδ[a∗

2 ]
(a1 − a∗2)2 max

a2∈[−1,1]∩Bδ[a∗
2 ]
−(a∗2 − a2)2

≤ δ2 = 0

In contrast, first-order GNE can be shown to exist in smooth pseudo-games.

Definition 9.5.5.

A smooth pseudo-game is a pseudo-game (A, g,u), where for all players i ∈ [n]:

[Continuous payoffs] ∇ai
ui is continuous

[Convex constraints] X−i is continuous, non-empty-, compact-, and convex-valued

[Convex action space] Ai is non-empty, compact, and convex

Theorem 9.5.1 [Existence of first-order GNE].

A first-order GNE exists in any smooth pseudo-game.

Proof of Theorem 9.5.1

Consider the first-order best-response correspondence FOBR(a)
.
=

×i∈[n] argmina′
i∈Xi(a−i)

{〈
∇ai

ui(a),a
′
i

〉}
. Note that at any fixed point a∗ s.t.

a∗ ∈ FOBR(a∗), for all players i ∈ [n],

a∗
i ∈ argmin

a′
i∈Xi(a

∗
−i)

{〈
∇ai

ui(a
∗),a′

i

〉}
Equivalently, for all i ∈ [n] and ai ∈ Xi(a∗

−i),〈
∇ai

ui(a
∗),a∗

i

〉
≤
〈
∇ai

ui(a
∗),ai

〉
⇐⇒

〈
∇ai

ui(a
∗),a∗

i − ai

〉
≤ 0

Hence, a∗ is first-order GNE.

Now, note that by the Berge’s maximum theorem Berge (1997), in smooth games,

the first-order best-response correspondence FOBR is upper hemicontinuous, and

non-empty-, compact-, convex-valued. Hence, by the Kakutani-Glicksberg fixed
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point theorem (Theorem 2.4.1) a fixed point of FOBR exists, and so a first-order

GNE is likewise guaranteed to exist.

A similar existence result can be shown for VE, under the additional assumption that the

pseudo-game has jointly convex constraints.

Theorem 9.5.2 [Existence of first-order VE].

A first-order VE exists in any smooth pseudo-game with jointly convex constraints.

Proof of Theorem 9.5.2

Consider the variational first-order best-response correspondence VFOBR(a)
.
=

argmina′∈X ∗

{∑
i∈[n]

〈
∇ai

ui(a),a
′
i

〉}
. Note that at any fixed point a∗ s.t. a∗ ∈

VFOBR(a∗), for all players i ∈ [n],

a∗ ∈ argmin
a′

i∈X ∗

∑
i∈[n]

〈
∇ai

ui(a
∗),a′

i

〉
Equivalently, for all players i ∈ [n] and a ∈ X ∗,∑
i∈[n]

〈
∇ai

ui(a
∗),a∗

i

〉
≤
∑
i∈[n]

〈
∇ai

ui(a
∗),ai

〉
⇐⇒

∑
i∈[n]

〈
∇ai

ui(a
∗),a∗

i − ai

〉
≤ 0

Hence, a∗ is first-order VE.

Now, note that by the Berge’s maximum theorem Berge (1997), in smooth games

with jointly convex constraints, the variational first-order best-response correspon-

dence VFOBR is upper hemicontinuous, and non-empty-, compact-, convex-valued.

Hence, by the Kakutani-Glicksberg fixed point theorem (Theorem 2.4.1) a fixed point

of VFOBR exists, and so a first-order VE is likewise guaranteed to exist.

9.5.3 First-Order and Local Equilibrium Equivalence

While a local GNE is not guaranteed to exist in general, in λ-Lipschitz-smooth pseudo-

games, we can show that for any ε ≥ 0, an ε-first-order GNE is an (ε+ λδ2/2, δ)-local GNE,
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hence guaranteeing the existence of a (λδ2/2, δ)-local GNE, for any choice of δ ≥ 0, by the

existence of first-order GNE.

Lemma 9.5.1 [First-Order and Local GNE Equivalence].

Given a λ-Lipschitz-smooth game, there exists ε, δ ≥ 0 s.t. any ε-first-order GNE (respec-

tively, VE) is an (ε+ λδ2/2, δ)-local GNE (respectively, (ε+ λδ2/2, δ)-local VE).

Proof of Lemma 9.5.1

Assume an ε-first-order GNE a∗ ∈ A. By the weak-concavity property of Lipschitz-

smooth functions, for all i ∈ [n] and ai ∈ Xi(a∗
−i),

ui(ai,a
∗
−i) ≤ ui(a∗) +

〈
∇ai

ui(a
∗),ai − a∗

i

〉
+
λ

2
∥ai − a∗

i ∥
2

ui(ai,a
∗
−i) ≤ ui(a∗) + ε+

λ

2
∥ai − a∗

i ∥
2

ui(ai,a
∗
−i)− ui(a∗) ≤ ε+ λ

2
∥ai − a∗

i ∥
2 ,

where the penultimate line follows from the definition of an ε-first-order GNE.

Now, because ai lies within a δ-ball around a∗
i , it follows that for all i ∈ [n] and

a ∈ Xi(a−i) ∩ Bδ[a∗
i ],

ui(ai,a
∗
−i)− ui(a∗) ≤ ε+ λδ2

2
(9.1)

That is, a∗ is an (ε+ λδ2/2, δ)-local Nash equilibrium.

The proof follows similarly for the case of first-order VE and local VE.
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9.6 Computation of First-Order and Local GNE

9.6.1 First-Order Variational Equilibrium and Variational Inequalities

We first present a characterization of first-order VE in pseudo-games in terms of strong

solutions of VIs. The following intuitive generalization of Lemma 9.4.1 is guaranteed to

hold for ε-first-order VE in all pseudo-games. We present this result for smooth pseudo-

games only, as the computational results we will derive will require the payoff functions of

the players to be differentiable. Nevertheless, the result directly generalizes to all pseudo-

games by replacing the VI in the statement of Lemma 9.6.1 with the one presented in

Remark 9.4.1.

Lemma 9.6.1 [SVI = VE in Smooth Pseudo-Games].

The set of ε-first-order VE of any smooth pseudo-game (A, g,u) is equal to the set of

ε-strong solutions SVIε(X ∗,v) of the VI (X ∗,v).

Proof of Lemma 9.6.1

Let a∗ ∈ X ∗ be a first-order VE of (A, g,u). Then, for all i ∈ [n] and a ∈ X ∗, we

have:

ε ≥
∑
i∈[n]

〈
∇ai

ui(a
∗),ai − a∗

i

〉
⇐⇒ ε ≥ ⟨−v(a∗),a − a∗⟩

⇐⇒ ε ≥ ⟨v(a∗),a∗ − a⟩

Hence, a∗ is an ε-strong solution of the VI (X ∗,v). Since the inequalities are equiva-

lent, the converse is also true.

Since the set of first-order VE is equal to the set of first-order NE in games, and X ∗ = A,

we also have the following corollary of Lemma 9.6.1.
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Corollary 9.6.1.

The set of ε-NE of any smooth game (A,u) is equal to the set of ε-strong solutions of the VI

(A,v).

9.6.2 Uncoupled Learning Dynamics First-Order GNE

Having characterized first-order VE in terms of the strong solutions of a VI, we now turn

our attention to the computation of first-order VE. Beyond variationally stable concave

pseudo-games, first-order methods are not guaranteed to converge to VE nor to GNE.5

Thus, a very natural question to ask is what convergence guarantees can be obtained in

variationally stable pseudo-games that are not necessarily concave.

The class of variationally stable pseudo-games contains the class of quasimonotone (and

hence, pseudomonotone and monotone) smooth pseudo-games with jointly convex con-

straints (see, for instance Huang and Zhang (2023)). Unfortunately, the class of quasimono-

tone games does not take us beyond the class of quasiconcave games as the following

remark describes.

Remark 9.6.1 [Quasimonotone Pseudo-Games are Quasiconcave].

We note that any quasimonotone game is quasiconcave. To see this, first recall that a

function is quasiconvex iff its subdifferential is quasimonotone (see, for instance, Theorem

4.1 of (Aussel et al., 1994)).

Now, for all k ̸= i ∈ [n], setting bk
.
= ak, the quasimonotonicity condition implies: for all

i ∈ [n] and ai, bi ∈ Ai,〈
∇ai

ui(a),ai − bi

〉
< 0 =⇒

〈
∇ai

ui(bi,a−i),ai − bi

〉
≤ 0

Hence for all i ∈ [n] and a−i ∈ A−i, the mapping bi 7→ ∇ai
ui(bi,a−i) is quasimonotone,

implying that bi 7→ ui(bi,a−i) is quasiconcave.

5See, for instance Example 9.6.1, and observe that first-order methods can converge to (0, 0), which is not a
VE.
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Nevertheless, while the class of quasimonotone pseudo-games contains the class quasicon-

cave pseudo-games, variationally stable games are not necessarily quasiconcave, as shown

by the following example.

Example 9.6.1 [Variationally stable game that is not quasiconcave].

Consider the single player game (1,A,u), where A1 = [−1, 1]2 and u1
.
= (a1)

.
= 1/3 a311 +

1/3 a312, equivalently stated as the following constrained optimization problem:

max
a11,a12∈[−1,1]

ui(a1)
.
=

1

3
a311 +

1

3
a312

For this game, we have ∇u1(a1)
.
= (a211, a

2
12). Now, notice that this game is vari-

ationally stable, since for a∗
1

.
= (1, 1), we have ,for all b1 ∈ [−1, 1], ∇u1(b1) ≥ 0,

and hence ⟨∇u1(b),a∗
i − bi⟩ ≥ 0. However, notice that u1 is not quasiconcave, since

u1(1/2(1, 0) + 1/2(1/2, 1)) = u1(3/4, 1/2) = 35
192 ≈ 0.182, but u1(1, 0) = 1

3 ≈ 0.333 and

u1(1/2, 1) =
3
8 ≈ 0.375, meaning that u1(1/2(1, 0) + 1/2(1/2, 1)) < min{u1(1, 0), u1(1/2, 1)}.

This observation suggests that the class of variational stable pseudo-games is an interesting

and broad enough class of non-quasiconcave pseudo-games to be worthy of our study.

Further, by Lemma 9.6.1, since variational stability ensures that the corresponding VI

satisfies the Minty condition, it is also a sufficient condition to ensure the convergence of

first-order methods. In particular, recall that by applying the mirror extragradient method

to solve the corresponding VI, we obtained the mirror extragradient learning dynamics

(Algorithm 7). Hence, applying Theorem 4.3.1 in conjuction with Lemma 9.6.1, we obtain

the following convergence theorem for the mirror extragradient learning dynamics in

variationally stable pseudo-games with jointly convex constraints.

Theorem 9.6.1 [Convergence of Mirror extragradient Learning Dynamics].

Let (A, g,u) be a variationally stable and λ-Lipschitz-smooth pseudo-game with jointly

convex constraints, and h a 1-strongly-convex and κ-Lipschitz-smooth kernel func-

tion. Consider the mirror extragradient learning dynamics (Algorithm 7) run on the

pseudo-game (A, g,u) with the kernel function h, a step size η ∈
(
0, 1√

2λ

]
, for any

time horizon τ ∈ N. The output sequence {x(t+0.5),x(t+1)}t satisfies the following: If
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a
(τ)
best ∈ argminx(k+0.5):k=0,...,τ divh(a

(k+0.5),a(k)), then for some τ ∈ O(1/ε2), a(τ)
best is an ε-

first-order VE of (A, g,u). In addition, the iterates asymptotically converge to a first-order

VE a∗ ∈ X ∗ of (A, g,u), i.e., limt→∞ a(t+0.5) = limt→∞ a(t) = a∗

Proof of Theorem 9.6.1

By Lemma 9.6.1, any ε-strong solution of the VI (X ∗,v) is an ε-first-order VE of the

smooth pseudo-game (A, g,u). Now, note that by the variational stability assump-

tion, the set of weak solutions of (X ∗,v) is non-empty. In addition, as (A, g,u) is a

jointly λ-Lipschitz-smooth concave pseudo-games with jointly convex constraints,

(X ∗,v) is λ-Lipschitz continuous. Hence, the assumptions of Theorem 4.3.1 hold,

giving us the result.

With this theorem in hand, we make two remarks on its implications on the local VE (or

GNE), and the local convergence properties of the algorithm.

Remark 9.6.2 [Computation of Local GNE/VE].

Applying Lemma 9.5.1 under the assumptions of Theorem 9.6.1, we can show that for

all ε, δ ≥ 0 s.t. ε ≥ λδ2/2, there exists some choice of τ ∈ O( 1
ε2 ), a

(τ)
best is a (ε, δ)-local VE of

(A, g,u). Choices of (ε, δ) s.t. ε ≥ λδ2/2 have previously been known under the name of

local parameter regimes (see, for instance (Daskalakis et al., 2020b) and (Daskalakis, 2022)),

and do not contradict the non-existence of a local-VE, since under this choice of parameters

ε = 0 iff δ = 0.

Remark 9.6.3 [Local Convergence to ε-VE].

As mentioned in Remark 9.4.5, the above finite-time global convergence result to ε-first-

order VE can be extended to a finite-time local convergence result to ε-first-order VE by

instead applying Theorem 4.3.2, under the assumption that the initial iterate of the mirror

extragradient learning dynamics starts close enough to a local weak solution of the VI

(X ∗,v). To the best of our knowledge this is the first finite-time local convergence result to

ε-first-order VE in pseudo-games, as well as ε-first-order NE in games.
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Remark 9.6.4 [Contributions to the literature].

To the best of our knowledge, the above result is the first polynomial-time computation

result for ε-first-order VE, as well as ε-first-order NE, in variationally stable pseudo-games

and games, respectively. It is also the first and only existing non-asymptotic convergence

analysis of the mirror extragradient learning dynamics in such games.
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9.6.3 Merit Function Methods for First-Order GNE

Unfortunately, as the following example shows, beyond variationally stable pseudo-games,

it is not in general possible to guarantee the convergence of the mirror extragradient method

to first-order GNE.

Example 9.6.2 [Non-Convergence of First-Order Methods Beyond Variationally Stable

Pseudo-Games].

Consider the two player zero-sum game (2,A,u) where A .
= R × R and u1(a1, a2) =

−u2(a1, a2) = (a2 − a1)2. The set of first-order VE of this game are given by {(a1,a2) ∈

R × R | a1 = a2}. However, for any a(0)1 > a
(0)
2 , for any choice of step sizes, the iterates

generated by the mirror extragradient learning dynamics tend to negative infinity, while

for a(0)1 < a
(0)
2 , the iterates tend to infinity.

To overcome this non-convergence issue, we will instead consider second-order methods.

Our approach to derive a second-order method method for pseudo-games will be to

optimize a merit function associated with the first-order VE of the pseudo-game.6 In

particular, recall that by Lemma 9.6.1, the set of first-order VE of the pseudo-game (A, g,u)

can be expressed as the set of strong solutions of the VI (X ∗,v). As such, we will consider

optimizing the regularized primal gap function associated with (X ∗,v), which we call the

variational exploitability.

Definition 9.6.1 [Variational Exploitability].

Given a regularization parameter α ≥ 0, the α-variational exploitability Ξα : X ∗ → R of

any pseudo-game (A, g,u) is defined as:

Ξα(a)
.
= max

b∈X ∗
⟨v(a),a − b⟩ − α

2
∥b − a∥2 (9.2)

The 0-variational exploitability is simply called the variational exploitability.

We note the following corollary of Lemma 4.4.1 for the variational exploitability, which

confirms that it is a merit function for first-order VE.
6The definition of merit functions for VE intuitively extends to first-order VE, by replacing any mentions of

“VE” in Definition 9.4.6 with “first-order-VE”.
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Corollary 9.6.2 [Properties of the regularized primal gap].

Consider a continuous VI (X ∗,v). If α > 0, then maxb∈X ∗ ⟨v(a),a − b⟩ − α
2 ∥b − a∥2 has a

unique solution. In addition, the following holds:

1. b∗(a) = argmaxb∈X ∗ ⟨v(a),a − b⟩ − α
2 ∥b − a∥2 .

= ΠX ∗
[
a − 1

αv(a)
]

2. ∇Ξα(a) = v(a)− (∇v(a) + αI) (b∗(a)− a)

3. Ξα(a) = maxb∈X ∗
α
2

[∥∥ 1
αv(a)

∥∥2 − ∥∥b − (a − 1
αv(a)

)∥∥2]
4. For all a ∈ X ∗, Ξα(a) ≥ 0 and Ξα(a) = 0 iff a is first-order VE

Now, notice that we can minimize variational exploitability via a mirror descent method,

but as the gradient ∇Ξα involves v(a) and ∇v(a), each of which respectively depends on

the gradient and the Hessian of the players’ utility functions, the corresponding method,

which we call the mirror variational learning dynamics (Algorithm 10), is a second-order

learning dynamic.

Algorithm 10 Mirror Variational Learning Dynamics

Input: Ξα, h, τ, η,a(0)

Output: {a(t)}t

1: for t = 1, . . . , τ do

2: a(t+1) ← argmin
a∈X ∗

{〈
∇Ξα(a

(t)),a − a(t)
〉
+ 1

2ηdivh(a,a
(t))
}

return {a(t)}t

Now, since the mirror variational learning dynamic algorithm is an instance of the mirror

potential method (Algorithm 5) applied to the VI (X ∗,v), we obtain the following theorem

as an application of Theorem 4.4.1.

Theorem 9.6.2 [Mirror Variational Learning Dynamics Convergence].

Let (A, g,u) be a jointly convex, λ-Lipschitz-smooth pseudo-game with ∇2ui β-Lipschitz-

continuous for all i ∈ [n], h a 1-strongly-convex kernel function, α ≥ 0, η ∈(
0, 1

2(2βαdiam(X ∗)2+1+2λ)

]
, and a(0) ∈ X ∗. Consider the mirror variational learning dy-
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namics (Algorithm 10) run on (A, g,u) with the variational exploitability Ξα associated

with (A, g,u), the kernel function h, an arbitrary time horizon τ ∈ N, the step size η, and

the initial iterate a(0). The output sequence {a(t)}t converges to a stationary point of Ξα,

respecting the following bound:

min
k=0,1,...,τ−1

max
a∈X ∗

⟨∇Ξα(a
(k)),a(k) − a⟩ ≤ 2Ξα(a

(0))

τ

In addition, if a(τ)
best ∈ argmina(k):k=0,...,τ−1maxa∈X ∗⟨∇Ξα(a

(k)),a(k) − a⟩, then, for some

τ ∈ O(1/ε), a(τ)
best is a ε-stationary point of Ξα.

With this theorem in hand, we conclude with a remark on its interpretation, before turning

to some applications of our results.

Remark 9.6.5 [When are stationary points global solutions].

As a corollary of Remark 4.4.1, we note that the stationary points of the variational ex-

ploitability correspond to VE when the pseudo-game is monotone. As such, Theorem 9.6.2

implies that a VE can be computed in polynomial time via the mirror variational learning

dynamics in monotone pseudo-games.
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Chapter 10

Arrow-Debreu Economies

10.1 Background

An Arrow-Debreu economy (n,m,X , e,u), denoted (X , e,u) when n andm are clear from

context, comprises a finite set of m ∈ N+ divisible commodities and n ∈ N+ consumers.

Each consumer i ∈ [n] is characterized by a set of consumptions Xi ⊆ Rm, an endowment

of commodities ei = (ei1, . . . , eim) ∈ Rn, and a utility function ui : Rm → R, which

describes the utility ui(xi) consumer i derives from consumption xi ∈ Xi.1 We define any

collection of per-consumer consumptions x
.
= (x1, . . . ,xn) ∈ X a consumption profile,

with X .
=×i∈[n]Xi defined as the set of consumption profiles, and any collection of

per-consumer endowments e .
= (e1, . . . , en) ∈ Rnm, as an endowment profile.

Remark 10.1.1.

For ease of exposition, we restrict our focus to Arrow-Debreu exchange economies, opting

not to present Arrow-Debreu competitive economies (see Arrow and Debreu (1954)),

which in addition to consumers are also inhabited by firms. Nevertheless, this focus

on Arrow-Debreu exchange economies is without loss of generality, since any firm can

be represented as a consumer in an Arrow-Debreu exchange economy by injecting an

additional commodity into the economy that represents ownership of the firm, setting the

1In line with the literature (see, for instance, Debreu et al. (1954)), the range of this utility function should
not be interpreted to have any meaning. Instead, the utility function ui should be understood to represent
a preference relation ⪰i on the space of consumptions Xi so that for any two consumptions xi,x

′
i ∈ X ,

ui(xi) ≥ ui(x
′
i) implies xi ⪰i x′

i.
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consumption space of the new consumer to be equal to the production space of the firm, and

its utility function so that it seeks to maximize its consumption of the commodity associated

with the firm’s ownership. This commodity should also appear in the endowments of

consumers that have contractual claims over the profits of the firms. A similar, albeit

much more complicated reduction than described here, was proposed earlier by Garg and

Kannan (2015), to which we refer the reader for additional details.

An Arrow-Debreu economy (n,m,X , e,u) can be represented as a Walrasian economy

(m,Z), where the the excess demand correspondence Z : ∆m ⇒ Rm is given by:

Z(p) .=
∑
i∈[n]

[
argmax

xi∈Xi:xi·p≤ei·p
ui(xi)

]
−
∑
i∈[n]

ei (10.1)

With this equivalence in hand, we define equilibrium in Arrow-Debreu economies.

Definition 10.1.1.

Given ε ≥ 0, an ε−Arrow-Debreu equilibrium (x∗,p∗) is a tuple comprising consumptions

x∗ ∈ Rn×n+ and prices p∗ ∈ ∆m s.t.

(Utility maximization) all consumers i ∈ [n] ε−maximize their utility constrained by the

value of their endowment: max
xi∈Xi:xi·p∗≤ei·p∗

ui(xi) ≤ ui(x∗
i )− ε

(Feasibility) the consumptions are ε−feasible, i.e.,
∑

i∈[n] x
∗
i ≤

∑
i∈[n] ei − ε

(Walras’ law) the value of the demand and the supply are equal, i.e., p∗ ·(∑
i∈[n] x

∗
i −

∑
i∈[n] ei

)
= 02

A 0-Arrow-Debreu equilibrium is simply called an Arrow-Debreu equilibrium.

Remark 10.1.2 [Arrow-Debreu equilibrium prices are Walrasian equilibria].

The set of Arrow-Debreu equilibrium prices of (n,m,X , e,u) is equal to the set of Walrasian

equilibria of the corresponding Walrasian economy (m,Z). To see this, notice that for any

Arrow-Debreu equilibrium (x∗,p∗) of (n,m,X , e,u), we have
∑

i∈[n] x
∗
i ∈ Z(p∗). Hence,

2We note that for the results in this section, the outputs of the algorithms we develop are guaranteed to
always satisfy Walras’ law, and as such, we need not introduce an ε-Walras’ law.
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since
∑

i∈[n] x
∗
i is feasible and satisfies Walras’ law under p∗, p∗ must be a Walrasian

equilibrium of the Walrasian economy (m,Z).

10.2 Solution Concepts and Existence

Remark 10.1.2 tells us that we can obtain the existence of Arrow-Debreu equilibrium prices

as a corollary of the existence of Walrasian equilibria, which in turn implies the existence

of Arrow-Debreu equilibrium consumptions, since for any fixed price the Arrow-Debreu

equilibrium consumptions can under very mild assumption be shown to exist.

Nevertheless, a more economically meaningful proof existence can be obtained by leverag-

ing a fundamental relationship, first observed in the seminal work of Arrow and Debreu

(1954), between pseudo-games and Arrow-Debreu economies.

Definition 10.2.1 [Arrow-Debreu Pseudo-Game].

Given an Arrow-Debreu economy (X , e,u), we define the associated (n+1)-player Arrow-

Debreu pseudo-game (n+ 1, 1,A, g,u′), denoted (A, g,u′) when n is clear from context,

in which the first n players are called “consumers”, and the (n+ 1)th player is called the

“auctioneer”, and where

(Action spaces) For all consumers i ∈ [n], Ai
.
= X ′

i and for the auctioneer An+1
.
= ∆m

where, X ′
i
.
=
{
xi |

∑
k∈[n] xk ≤

∑
k∈[n] ek + γ,∀x ∈ X

}
is the restricted

consumption space for any choice of γ > 0, which expands the set of

consumptions slightly beyond those which are feasible.

(Constraints) For all consumers i ∈ [n], gi(x,p) = p · (ei − xi), and for the auctioneer

gn+1(x,p)
.
= 0

(Payoffs) For all consumers i ∈ [n], u′i(x,p)
.
= ui(xi), and for the auctioneer,

u′n+1(x,p)
.
= p ·

(∑
i∈[n] xi −

∑
i∈[n] ei

)
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Any Arrow-Debreu pseudo-game (A, g,u′) can succinctly be represented as the following

n+ 1 simultaneous optimization problems:

∀i ∈ [n], max
xi∈X ′

i :xi·p≤ei·p
ui(xi) max

p∈∆m

p ·

∑
i∈[n]

xi −
∑
i∈[n]

ei


Note that the above simultaneous n+ 1 optimization problems constitute a pseudo-game

and not just a game since the prices chosen by the auctioneer determine the feasible action

space of the consumers (i.e., the budget sets of the consumers).

With this pseudo-game in hand, next we will show that the set of Arrow-Debreu equilibria

of any Arrow-Debreu economy is equal to the set of GNE of this pseudo-game. The results

in this chapter will hold for (quasi)concave Arrow-Debreu economies.

Definition 10.2.2 [(Quasi)concave economies].

An Arrow-Debreu economy (X , e,u) is said to be quasiconcave (respectively, concave) iff

it satisfies the following conditions for all consumers i ∈ [n]:

(Closed consumption set) Xi is non-empty, bounded from below, closed, and convex

(Feasible budget set) There exists a consumption that is strictly less than the con-

sumer’s endowment, i.e., for all i ∈ [n], there exists xi ∈ Xi s.t.

xi < ei

(Continuity) ui is continuous

((Quasi)concavity) ui is quasiconcave (respectively, concave)

(Non-satiation) ui is non-satiated, i.e., for all xi ∈ Xi, there exists x′
i ∈ Xi s.t.

ui(x
′
i) > ui(x

′
i)

Lemma 10.2.1 [GNE = Arrow-Debreu Equilibrium].

The set of Arrow-Debreu equilibria of any quasiconcave Arrow-Debreu economy (X , e,u)

is equal to the set of GNE of the corresponding Arrow-Debreu pseudo-game (A, g,u′).
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Proof of Lemma 10.2.1

We prove only one direction (i.e., any GNE of an Arrow-Debreu pseudo-game is an

Arrow-Debreu equilibrium). The converse follows similarly. For additional details,

see the proof of Theorem 1 in Arrow and Debreu (1954).

Let (x∗,p∗) be any GNE of the Arrow-Debreu pseudo-game.

First, by summing the consumers’ budget constraints, and by the definition of p∗ at

a GNE, we have:

0 ≥ p∗ ·

∑
i∈[n]

x∗
i −

∑
i∈[n]

ei

 (Sum of consumers’ budget constraints)

= max
p∈∆m

p ·

∑
i∈[n]

x∗
i −

∑
i∈[n]

ei

 (Definition of p∗)

≥ jj ·

∑
i∈[n]

x∗
i −

∑
i∈[n]

ei

 ∀j ∈ [m]

=
∑
i∈[n]

x∗ij −
∑
i∈[n]

eij ∀j ∈ [m] (10.2)

Hence, x∗ is feasible: i.e., x∗ ∈ X ′.

Second, suppose that some consumers’ budget constraints is not binding: i.e., assume

there exists some consumer i ∈ [n] s.t.

x∗
i · p∗ < ei · p∗ (10.3)

Now, by non-satiation, there exists x′
i ∈ Xi s.t. ui(x

′
i) > ui(x

∗
i ). As a result, there

must also exist λ ∈ (0, 1) s.t. for the consumption x†
i
.
= λx′

i + (1− λ)x∗
i , we have:

1. x†
i ∈ X ′

i , since X ′
i is convex and x∗

i ∈ int(X ′
i ) by Equation (10.2)

2. ui(x
†
i ) > ui(x

∗
i ), since ui is quasiconcave

3. x†
i · p∗ ≤ ei · p∗, since the function xi 7→ xi · p∗ is continuous

However, this is a contradiction, since x∗
i ∈ argmax

xi∈Xi:xi·p≤ei·p
ui(xi). Hence, for all

consumers i ∈ [n], we must have:

x∗
i · p∗ = e∗i · p∗ (10.4)
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Summing Equation (10.4) over consumers i ∈ [n], and rearranging yields:

p∗ ·

∑
i∈[n]

x∗
i −

∑
i∈[n]

ei

 = 0

Hence, (x∗,p∗) satisfies Walras’ law.

Finally, observe that x∗
i ∈ int(X ′

i ) for all consumers i ∈ [n] by Equation (10.2).

Furthermore, since X ′
i ⊆ Xi, it follows that ui(x

∗
i ) = max

xi∈X ′
i :xi·p∗≤ei·p∗

ui(xi) =

max
xi∈Xi:xi·p∗≤ei·p∗

ui(xi). Hence, consumers are utility maximizing constrained by

the value of their endowments at prices p∗, i.e., for all consumers i ∈ [n], we have

x∗
i ∈ argmax

xi∈Xi:xi·p∗≤ei·p∗
ui(xi).

Putting it all together, (x∗,p∗) is then an Arrow-Debreu equilibrium.

Remark 10.2.1 [Bounded Excess Demand].

Recall that in Remark 5.4.8 we had suggested that assuming boundedness of the excess

demand for the convergence of mirror extratâtonnement (Algorithm 6) was a natural

assumption. The above lemma provides a justification for this earlier remark since it means

that in the definition of the excess demand for Arrow-Debreu markets we can replace

X by X ′. Unlike X , X ′ is compact. Therefore, by Berge’s maximum theorem (Berge,

1997), the excess demand z is continuous over ∆m,3 and as such the excess demand is

guaranteed to be bounded by maxp∈∆m
∥z(p)∥, where the maximum is well-defined, since

∆m is non-empty and compact, and since z is continuous.

With the above lemma in hand, we can apply Theorem 9.2.1 to prove the existence of an

Arrow-Debreu equilibrium.

Theorem 10.2.1 [Existence of Arrow-Debreu Equilibrium].

An Arrow-Debreu equilibrium is guaranteed to exist in any quasiconcave Arrow-Debreu

economy.

3Recall that for our algorithmic results we assume Z is singleton-valued.
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Proof of Theorem 10.2.1

Given any concave Arrow-Debreu economy (X , e,u), construct the associated

Arrow-Debreu pseudo-game (A, g,u′) as in Definition 10.2.1. First, notice that

the action spaces of the players {X ′
i}i and ∆m are non-empty, compact, and convex.

Second, g is continuous; for all players i ∈ [n+ 1], gi is quasiconcave in the action

of the ith player’s action; and for all players i ∈ [n], and p ∈ ∆m there exists xi

s.t. gi(x,p) ≥ 0. Finally, for all players i ∈ [n + 1], u′i is continuous, as well as

quasiconcave in each player’s action. Hence, by Theorem 9.2.1 a GNE of (A, g,u′)

is guaranteed to exist. In turn, by Remark 10.2.1 an Arrow-Debreu equilibrium is

guaranteed to exist the Arrow-Debreu economy.
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10.3 Computation of Arrow-Debreu Equilibrium

With the question of existence of Arrow-Debreu equilibria out of the way, we now turn our

attention to the computation of an Arrow-Debreu equilibrium.

To motivate some of the issues that arise in the computation of an Arrow-Debreu equi-

librium, we will first apply the results derived in Chapter 5 to establish the polynomial-

time convergence of the mirror extratâtonnment process to an Arrow-Debreu equilibrium

in Arrow-Debreu economies that satisfy the Minty condition assuming access to an ex-

cess demand oracle. However, as the implementation of an excess demand oracle is in

general not possible, and because the mirror extratâtonnment process is not necessarily

guaranteed to converge with only an approximate excess demand oracle, this polynomial-

time computation of Walrasian equilibrium in Walrasian economies cannot be interpreted

as a polynomial-time computation of an Arrow-Debreu equilibrium in Arrow-Debreu

economies. We will thus introduce a new market dynamic, which we call the mirror extra-

trade dynamic, and we will show that this dynamic converges in polynomial time to an

Arrow-Debreu equilibrium in a large class of Arrow-Debreu economies, known as pure

exchange economies.

10.3.1 Computational Model

With the question of existence answered, we now turn our attention to the computation of

Arrow-Debreu equilibrium.

Algorithms for the computation of an Arrow-Debreu equilibrium are called market dy-

namics.

Definition 10.3.1 [Market Dynamics].

Given an Arrow-Debreu economy (X , e,u) and an initial iterate (p(0),x(0)) ∈ ∆m ×X , a

market dynamic π consists of an update function that generates the sequence of iterates
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{p(t),x(t)}t given by: for all t = 0, 1, . . .,

(p(t+1),x(t+1))
.
= π

(
(X , e,u) ∪

t⋃
i=0

(p(i),x(i))

)

The computational complexity results in this chapter will rely on the following computa-

tional model.

Definition 10.3.2 [Arrow-Debreu Economy Computational Model].

Given an Arrow-Debreu economy (X , e,u) s.t. for some k ∈ N++ the derivatives {∇ju}k−1
j=1

are well-defined, the computational complexity of a market dynamic is measured in term

of the number of evaluations of the the functions u,∇u, . . . ,∇ku.

10.3.2 Tâtonnement in WARP Arrow-Debreu Economies

Recall that any Arrow-Debreu economy (n,m,X , e,u) can be represented as a Walrasian

economy (m,Z). This equivalence provides us with a first approach to computing an

Arrow-Debreu equilibrium, namely computing a Walrasian equilibrium p∗ ∈ ∆m of the

Walrasian economy (m,Z) using the mirror extratâtonnement process introduced in Chap-

ter 5, and then setting for all consumers i ∈ [n], x∗
i ∈̇ argmax

xi∈Xi:xi·p∗≤ei·p∗
ui(xi), so that (x∗,p∗)

is an Arrow-Debreu equilibrium of the Arrow-Debreu economy (X , e,u).

Now, if we assume, that for all players i ∈ [n], ui is strictly concave, we can ensure that

Z = {z} is singleton-valued, and under suitable additional conditions, we can further

ensure that Z satisfies variational stability. However, recall that in Chapter 5, to prove the

convergence of the mirror extratâtonnement process, we had to ensure that z is bounded,

which requires highly restrictive assumptions on z. Nevertheless, Lemma 10.2.1 suggests

that we can consider an alternative excess demand correspondence definition Z ′ for Arrow-

Debreu economies s.t. Z ′ is bounded-valued, which defines a Walrasian Arrow-Debreu

economy we call a restricted Walrasian Arrow-Debreu economy.

Definition 10.3.3 [Restricted Walrasian Arrow-Debreu Economy].

Given an Arrow-Debreu economy (n,m,X , e,u), the Walrasian Arrow-Debreu economy
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(m,Z) is a Walrasian economy with the excess demand correspondence given by:

Z ′(p) =
∑
i∈[n]

[
argmax

xi∈X ′
i :xi·p≤ei·p

ui(xi)

]
−
∑
i∈[n]

ei ,

where X ′
i =

{
xi |

∑
k∈[n] xk ≤

∑
k∈[n] ek + γ,∀k ∈ [n],xk ∈ Xk

}
for any choice of γ > 0.

Notice that in the definition of Z ′, the consumption sets {Xi}i in the definition of Z

(Equation (10.1)) are replaced by the restricted consumption sets {X ′
i}i. From Lemma 10.2.1,

we can then infer that any Walrasian equilibrium p∗ ∈ ∆m of the restricted Walrasian

Arrow-Debreu economy (m,Z ′) is an Arrow-Debreu equilibrium price of (n,m,X , e,u).

Further, as shown in the following lemma, it is straightforward to verify that the Walrasian

economy (m,Z), as the name suggests, gives rise to a Walrasian competitive economy.

Lemma 10.3.1 [Arrow-Debreu Economies are Walrasian competitive Economies].

Consider the Walrasian Arrow-Debreu competitive economy (m,Z) associated with the

quasiconcave Arrow-Debreu economy (n,m,X , e,u). Then, Z satisfies the following:

1. (Homogeneity of degree 0) For all λ > 0, Z(λp) = Z(p)

2. (Weak Walras’ law) For all p ∈ Rm+ and z(p) ∈ Z(p), p · z(p) ≤ 0

3. (Non-Satiation) for all p ∈ Rm+ and z(p) ∈ Z(p), z(p) ≤ 0m implies p · z(p) = 0

4. (Continuity) The excess demand correspondence Z is upper hemicontinuous on

∆m, non-empty-, compact-, and convex-valued

5. (Boundedness) For all p ∈ Rm+ and z(p) ∈ Z(p), ∥z(p)∥∞<∞

That is, the Walrasian Arrow-Debreu competitive economy (m,Z) associated with the

Arrow-Debreu economy (n,m,X , e,u), is a continuous competitive economy, which, in

addition, is bounded.
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Proof of Lemma 10.3.1

Homogeneity. For all λ > 0, we have:

Z(λp) =
∑
i∈[n]

[
argmax

xi∈X ′
i :xi·(λp)≤ei·(λp)

ui(xi)

]
−
∑
i∈[n]

ei

=
∑
i∈[n]

[
argmax

xi∈X ′
i :λxi·p≤λei·p

ui(xi)

]
−
∑
i∈[n]

ei

=
∑
i∈[n]

[
argmax

xi∈X ′
i :xi·p≤ei·p

ui(xi)

]
−
∑
i∈[n]

ei

= Z(p)

Walras’ law. Fix any p ∈ Rm+ . For all consumers i ∈ [n], if x∗
i ∈̇ argmax

xi∈X ′
i :xi·p≤ei·p

ui(xi),

then

x∗
i · p ≤ ei · p

Summing over all consumers, and rearranging yields:

p ·

∑
i∈[n]

x∗
i −

∑
i∈[n]

ei

 ≤ 0

Hence, for all p ∈ Rm+ and z(p) ∈ Z(p), p · z(p) ≤ 0.

Non-Satiation Fix any p ∈ ∆m. For all consumers i ∈ [n], let

x∗
i ∈̇ argmax

xi∈X ′
i :xi·p≤ei·p

ui(xi). Suppose not: i.e., assume z(p) ≤ 0m, while there exists

some consumer i ∈ [n] s.t.

x∗
i · p < ei · p

Now, by non-satiation, there exists x′
i ∈ Xi s.t. ui(x

′
i) > ui(x

∗
i ). As a result, there

must also exist λ ∈ (0, 1) s.t. for the consumption x†
i
.
= λx′

i + (1− λ)x∗
i ,

1. x†
i ∈ X ′

i since x∗
i ∈ int(X ′

i )

2. ui(x
†
i ) > ui(x

∗
i ) since ui is quasiconcave

3. x†
i · p ≤ ei · p since the function xi 7→ xi · p is continuous.

However, this is a contradiction, because x∗
i ∈ argmax

xi∈X ′
i :xi·p≤ei·p

ui(xi).
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Hence, for all consumers i ∈ [n], we must have:

x∗
i · p = e∗i · p (10.5)

Summing over all consumers i ∈ [n], and rearranging yields: for all z(p) ∈ Z(p),

0 = p∗ ·

∑
i∈[n]

x∗
i −

∑
i∈[n]

ei

 = p∗ · z(p)

Continuity.

Since X ′ is non-empty, compact, and convex, and for all consumers i ∈ [n], ui is

continuous and quasiconcave, and there exists xi ∈ Xi s.t. xi < ei, the assumptions

of Berge’s maximum theorem (Berge, 1997) hold, and the excess demand Z is thus

upper hemicontinuous, non-empty, compact, and convex-valued over ∆m.

Boundedness Since for all consumers i ∈ [n], Xi is bounded from below, X ′
i must

also be bounded, as it is bounded from above by
∑

i∈[n] ei. Hence, for all consumers

i ∈ [n], X ′
i is compact. Hence, for all p ∈ Rm+ and z(p) ∈ Z(p), ∥z(p)∥∞< diam(X ′

i ).

With the above lemma in hand, we could apply Theorem 5.4.1 to show convergence of the

mirror extratâtonnement process under the conditions derived in Chapter 5. However, such

a result would rely on the existence of an exact excess demand oracle, which cannot be

guaranteed to exist in general. As such, to obtain a truly polynomial-time market dynamic

for Arrow-Debreu economies, we instead resort to solving not the restricted Walrasian

Arrow-Debreu economy but rather the Arrow-Debreu pseudo-game.

10.3.3 Mirror Extratrade Dynamics in Pure Exchange Economies

Unfortunately, while the Arrow-Debreu pseudo-game allows us to establish the existence

of an Arrow-Debreu equilibrium in Arrow-Debreu economies, as this pseudo-game does

not have jointly convex constraints, we cannot apply any of our convergence results to this

pseudo-game. To get around this difficulty, we will restrict our attention to pure exchange
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economies, and introduce an alternative formulation of Arrow-Debreu economies as a

jointly convex pseudo-game.

Definition 10.3.4 [Pure Exchange Economy].

A pure exchange economy is an Arrow-Debreu economy (X , e,u) s.t. for all consumers

i ∈ [n],

(No debts payable) Endowments are positive, i.e., ei ∈ Rm+

(No commodity creation) Consumers cannot create any commodity, i.e., Xi ⊆ Rm+

Intuitively, pure exchange economies are those Arrow-Debreu economies in which con-

sumers 1. do not owe any amount of any commodity to any other consumer, and 2. cannot

create additional commodities. We make the following observation about pure exchange

economies.

Define ⊘ as the Hadamard division operator, i.e., a⊘ b
.
= (ai/bi)i.

Remark 10.3.1 [Positive supply of commodities].

Note that in quasiconcave pure exchange economies, every commodity has a strictly

positive endowment, i.e, for all commodities j ∈ [m],
∑

k∈[n] ekj > 0, and as such Hadamard

divisions by
∑

k∈[n] ek are always well-defined. To see this, recall that in Arrow-Debreu

economies, for all consumers i ∈ [n], there exists xi ∈ Xi s.t. for all commodities j ∈

[m], xij < eij . However, since in pure exchange economies Xi ⊆ Rm+ , this condition is

only guaranteed to hold in pure exchange economies iff for all consumers i ∈ [n] and

commodities j ∈ [m], eij > 0, .

In light of the above remark, we make the following simplifying assumption, without loss

of generality which will lighten our notation going forward.

Assumption 10.3.1 [Normalized Aggregate Supply].

Without loss of generality, for any pure exchange economy (X , e,u), we assume every

commodity has unit aggregate supply, i.e.,
∑

i∈[n] ei = 1m.

The following remark explains why this assumption is without loss of generality.
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Remark 10.3.2 [Unit Aggregate Supply].

The assumption that every commodity has unit aggregate supply is without loss of gener-

ality, because commodities are divisible, and as such any pure exchange economy without

aggregate unit supply (X , e,u) can be converted into a pure exchange economy (X , e′,u′)

with aggregate unit supply, where for all consumers i ∈ [n], ei
.
= ei ⊘

∑
k∈[n] ek and

u′i(xi)
.
= ui

(
xi ⊘

∑
k∈[n] ek

)
. Then, any Arrow-Debreu equilibrium (x∗,p∗) of (X , e′,u′)

can be converted to an Arrow-Debreu equilibrium (x∗∗,p∗) of (X , e′,u′) by simply setting,

for all consumers i ∈ [n] and commodities j ∈ [m], x∗∗ij
.
= x∗ij(

∑
i e

′
ij). A straightforward

algebraic manipulation then verifies this constructed Arrow-Debreu equilibrium satisfies

feasibility, Walras’ law, and utility maximization.

Intuitively, this construction tells us that Arrow-Debreu equilibrium consumptions of any

pure exchange economy with unit aggregate supply can be interpreted as equilibrium

percentages of the aggregate supply consumed in any pure exchange economy without

aggregate unit supply.

We now introduce an alternative pseudo-game formulation of pure exchange economies,

which has jointly convex constraints. The pseudo-game we propose is equivalent to the

Trading Post game (Shapley and Shubik, 1977) proposed by Shapley and Shubik, up to a

variable substitution.

Definition 10.3.5 [Trading Post Pseudo-Game].

Given a pure exchange economy (X , e,u), we define the associated n-player trading post

pseudo-game (n,m+ 3,A, g,u′), denoted (A, g,u′) when n and m are clear from context,

in which the players are called consumers, and:

(Action spaces) For all consumers i ∈ [n], Ai
.
= Bi ={

(βi,πi) ∈ Rm × Rm++ | (βi ⊘ πi) ∈ X ′
i

}
, where X ′

i is the restricted

consumption set as defined in Definition 10.2.1.
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(Constraints) For all consumers i ∈ [n], gi1(β,π) = ei ·
(∑

k∈[n] βk

)
−
∑

j∈[m] βij ,

gi2(β,π) =
∑

i∈[n],j∈[m] βij − 1, gi3(β,π) = 1 −
∑

i∈[n],j∈[m] βij , and

gi(j+3)(β,π)
.
= πij −

∑
k∈[n] βkj , for all j ∈ [m].

(Payoffs) For all consumers i ∈ [n], u′i(β,π)
.
= ui(βi ⊘ πi).

The trading post pseudo-game can succinctly be represented as the following n simultane-

ous optimization problems: for all consumers i ∈ [n],

max
(βi,πi)∈Bi

ui(βi ⊘ πi)

s.t.
∑
j∈[m]

βij = ei ·

∑
k∈[n]

βk

 (Budget constraint)

∀j ∈ [m],
∑
k∈[n]

βkj ≤ πij (Bid constraint)

∑
i∈[n],j∈[m]

βij = 1 (Bid constraint)

With this definition in hand, we first show that set of Arrow-Debreu equilibria of any

quasiconcave (Arrow-Debreu) pure exchange economy can be converted to a GNE of the

associated trading post game, and vice-versa.

Lemma 10.3.2 [Trading Post GNE define Arrow-Debreu Equilibria].

Consider a quasiconcave pure exchange economy (X , e,u) and the associated trading post

pseudo-game (A, g,u′). If (β∗,p∗) is a GNE of (A, g,u′), then (x∗,p∗) is an Arrow-Debreu

equilibrium of (X , e,u), where

p∗ .
=
∑
k∈[n]

β∗
k ∀i ∈ [n], x∗

i
.
= β∗

i ⊘ π∗
i

Proof of Lemma 10.3.2

Let (β∗,π∗) be a GNE of (A, g,u′). Define x∗ and p∗ as follows:

p∗ .
=
∑
k∈[n]

β∗
k ∀i ∈ [n], xi

.
= β∗

i ⊘ π∗
i

First, note that xi = β∗
i ⊘π∗

i ∈ Xi and p∗ ∈ ∆m, since
∑

j∈[m] p
∗
i =

∑
k∈[n],j∈[m] β

∗
kj =

1.
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Second, summing x∗
i over all consumers i ∈ [n] and using the bid constraint

(
∑

k∈[n] βk)⊘ (
∑

k∈[n] ek) ≤ πi, yields: for all j ∈ [m],

∑
i∈[n]

x∗ij =
∑
i∈[n]

β∗ij
π∗ij
≤
∑
i∈[n]

β∗ij∑
k∈[n] β

∗
kj

=

∑
i∈[n] β

∗
ij∑

k∈[n] β
∗
kj

= 1m =
∑
i∈[n]

eij (10.6)

Hence, x∗ ≤
∑

i∈[n] ei, meaning x∗ is feasible.

Third, suppose not: i.e., assume a consumer i ∈ [n] and a commodity j ∈ [m] s.t.

p∗j > 0 and
∑

k∈[n] β
∗
kj < π∗ij . Recall that, by non-satiation, there exists x′

i ∈ Xi s.t.

ui(x
′
i) > ui(x

∗
i ). Choose π′

i ∈ Rm++ s.t. x′
i = β∗

i ⊘ π′
i. Now, we can choose a small

enough λ ∈ (0, 1) s.t. for x†
i
.
= µx′

i + (1− µ)x∗
i , we have:

1. x†
i
.
= β∗

i ⊘ π†
i , for some π†

i s.t. (β∗
i ,π

†
i ) ∈ Bi, since (β∗

i ,π
∗
i ) ∈ int(Bi) by

Equation (10.6)

2.
∑

k∈[n] β
∗
kj ≤ π

†
ij , since both sides of the inequality are continuous in π

Further, observe that ui(β
∗
i ⊘ π†

i ) = ui(x
†
i ) > ui(x

∗
i ) = ui(β

∗
i ⊘ π∗

i ), since ui is

quasiconcave. However, this contradicts, the claim that (β∗,π∗) is a GNE. Hence, for

all consumers i ∈ [n] and commodities j ∈ [m] s.t. p∗j > 0, it holds that
∑

k∈[n] β
∗
kj =

π∗ij .

Hence, for all consumers i ∈ [n],

∑
j∈[m]

β∗ij = ei ·

∑
k∈[n]

β∗
k


∑
j∈[m]

x∗ijπ
∗
ij = (ei · p∗)

∑
j∈[m]:p∗j>0

x∗ijπ
∗
ij +

∑
j∈[m]:p∗j=0

x∗ij︸︷︷︸
=0

π∗ij = ei · p∗

∑
j∈[m]:p∗j>0

x∗ijp
∗
j +

∑
j∈[m]:p∗j=0

x∗ij︸︷︷︸
=0

p∗j = ei · p∗

x∗
i · p∗ = ei · p∗
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Summing over all consumers i ∈ [n], and rearranging yields:

p∗ ·

∑
i∈[n]

x∗
i −

∑
i∈[n]

ei

 = 0

Hence, (x∗,p∗) satisfies Walras’ law.

Finally, since for all consumers i ∈ [n], x∗
i ∈ int(X ′

i ) by Equation (10.2), and X ′
i ⊆ Xi,

this implies that ui(x
∗
i ) = max

xi∈X ′
i :xi·p∗≤ei·p∗

ui(xi) = max
xi∈Xi:xi·p∗≤ei·p∗

ui(xi). Hence,

consumers are utility maximizing constrained by the value of their endowments at

prices p∗, i.e., for all consumers i ∈ [n], x∗
i ∈ argmax

xi∈Xi:xi·p∗≤ei·p∗
ui(xi).

Putting it all together, (x∗,p∗) is an Arrow-Debreu equilibrium.

Remark 10.3.3 [Arrow-Debreu equilibria define trading post GNE].

While we do not present a statement and proof for the converse of the above lemma, as we

will not make use of it, using a similar argument to that provided in Lemma 10.3.2, we can

also show that any Arrow-Debreu equilibrium can used to construct a trading post GNE.

The converse direction is less useful at present since unlike in Lemma 10.2.1, where we

have shown that the set of GNE of the Arrow-Debreu pseudo-game is equal to the set of

Arrow-Debreu equilibria in the corresponding the Arrow-Debreu economy, for the trading

post pseudo-game, we instead have an equivalence after suitable algebraic manipulation

of the GNE of the trading post pseudo-game and the Arrow-Debreu equilibrium of a

quasiconcave pure exchange economy. That is, when taken in conjuction with its converse,

Lemma 10.3.2 cannot be interpreted an “if and only if" result, but perhaps rather as a

polynomial-time equivalence result.

With the above lemma in hand, we now describe the properties of the trading post pseudo-

game with the following result.

Lemma 10.3.3 [Trading Post Pseudo-Game Properties].

The trading post pseudo-game associated with any quasiconcave pure exchange economy

is a quasiconcave pseudo-game with jointly convex constraints.
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Proof of Lemma 10.3.3

The trading post pseudo-game is jointly convex: First, note that for all consumers

i ∈ [n], Bi is non-empty, compact, convex since X ′
i is non-empty, compact, and

convex, and Bi is the perspective transformation of X ′
i (see, for instance, Section 2.3.3

of Boyd et al. (2004)), which is continuous and preserves convexity.

Second, the constraints of the pseudo-game are all affine in (β,π), and are hence

continuous and concave in (β,π). As such, the trading pseudo-game has jointly

convex constraints.

The trading post pseudo-game is quasiconcave: Recall that in the trading pseudo-

game, for all consumers i ∈ [n], u′i(β,π)
.
= ui(βi ⊘ πi). The function ui is qua-

siconcave iff for all α ∈ R, the superlevel sets Xαi
.
= {xi ∈ Xi | ui(xi) ≥ α}

are convex. Now, if we pass the superlevel sets Xαi through the mapping Xαi 7!7!

{(βi,πi) ∈ Rm+ × Rm++ | βi ⊘ πi ∈ Xαi }, since the mapping is a linear-fractional

transformation of Xαi , the transformed sets are convex as well (see, for instance,

Section 2.3.3 of Boyd et al. (2004)). That is, for all α ∈ R, the superlevel sets

{(βi,πi) ∈ Rm+ × Rm++ | u′i(β,π) ≥ α} = {(βi,πi) ∈ Rm+ × Rm++ | ui(βi ⊘ πi) ≥ α} of

u′i are convex. Hence, u′i is quasiconcave.

Using the above lemma, we can in turn obtain the existence of a VE in the trading post

pseudo-game as a corollary of Lemma 10.3.3, because the trading post pseudo-game

satisfies the conditions for the existence of a VE (Theorem 9.2.2).

Corollary 10.3.1.

The set of VE of the trading post pseudo-game associated with any Arrow-Debreu economy

is non-empty.

Since any VE is a GNE, by Lemma 10.3.2, we can set our sights on the computation of a

VE in the trading post pseudo-game to compute an Arrow-Debreu equilibrium in a pure

exchange economy. Our first approach to computing a VE will be to apply the mirror
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extragradient learning dynamics to the trading post pseudo-game. We call the market

dynamics arising from running the mirror extragradient learning dynamics on the trading

post pseudo-game the mirror extratrade dynamics. To guarantee convergence of the mirror

extragradient learning dynamics in the trading post pseudo-game, we must ensure that the

trading post pseudo-game is variationally stable. It turns out that when the utility functions

of the consumers in a pure exchange economy are concave (rather than quasiconcave), the

associated trading post pseudo-game is guaranteed to be variationally stable. To this end,

we introduce the following technical lemma.

Lemma 10.3.4 [Pseudoconcavity of composition of concave and ratio functions].

If f : Rn+ → R is a concave function and g : Rn+ × Rn++ → Rn+ is the ratio function s.t.

g(a, b)
.
= a⊘ b, then ν(a, b) .= f(g(a, b)) is pseudoconcave.

Proof of Lemma 10.3.4

Assume a ∈ Rn+ and b ∈ Rn++ s.t.

0 ≥ max
a′∈Rn

+,b
′∈Rn

++

〈
∇ν(a, b), (a′, b′)− (a, b)

〉
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Now, since ∇ai
ν(a, b) = 1

bi
∇if (a⊘ b), and ∇biν(a, b) = −ai

b2i
∇if (a⊘ b), it holds

that:

0 ≥ max
a′∈Rn

+,b
′∈Rn

++

〈
∇ν(a, b), (a′, b′)− (a, b)

〉
= max

a′∈Rn
+,b

′∈Rn
++

∑
i∈[n]

〈
∇(ai,bi)

ν(a, b), (a′i, b
′
i)− (ai, bi)

〉
= max

a′∈Rn
+,b

′∈Rn
++

∑
i∈[n]

〈(
1

bi
∇if (a⊘ b) ,−ai

b2i
∇if (a⊘ b)

)
, (a′i, b

′
i)− (ai, bi)

〉

= max
a′∈Rn

+,b
′∈Rn

++

∑
i∈[n]

[
1

bi

〈
∇if (a⊘ b) , a′i − ai

〉
− ai
b2i

〈
∇if (a⊘ b) , b′i − bi

〉]

= max
a′∈Rn

+,b
′∈Rn

++

∑
i∈[n]

[〈
∇if (a⊘ b) ,

a′i
bi
− ai
bi

〉
+

〈
∇if (a⊘ b) ,

ai
bi
− aib

′
i

b2i

〉]

= max
a′∈Rn

+,b
′∈Rn

++

∑
i∈[n]

〈
∇if (a⊘ b) ,

a′i
bi
− aib

′
i

b2i

〉

= max
a′∈Rn

+,b
′∈Rn

++

∑
i∈[n]

〈
∇if (a⊘ b) ,

b′i
bi

(
a′i
b′i
− ai
bi

)〉

=
∑
i∈[n]

max
a′
i,b

′
i

{
b′i
bi

〈
∇if (a⊘ b) ,

a′i
b′i
− ai
bi

〉}
︸ ︷︷ ︸

≥ bi
bi

〈
∇if(a⊘b),

ai
bi
− ai

bi

〉
=0

≥ 0

Now, since for all i ∈ [n], b′i
bi

> 0 since bi, b
′
i ∈ R++, and

maxa′
i,b

′
i

{
b′i
bi

〈
∇if (a⊘ b) , a

′
i

b′i
− ai

bi

〉}
≥ 0, for the above inequality to hold at (a, b), it

must be that for all a′ ∈ Rn+, b′ ∈ Rn++ and for all i ∈ [n],

0 ≥
〈
∇if (a⊘ b) ,

a′i
b′i
− ai
bi

〉
implies 0 ≥

∑
i∈[n]

〈
∇if (a⊘ b) ,

a′i
b′i
− ai
bi

〉
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Hence, since f is concave, for all a′ ∈ Rn+, b′ ∈ Rn++,

0 ≥
∑
i∈[n]

〈
∇if (a⊘ b) ,

a′i
b′i
− ai
bi

〉

=
〈
∇f (a⊘ b) , (a′ ⊘ b′)− (a⊘ b)

〉
≥ f

(
a′ ⊘ b′)

)
− f (a⊘ b)

= ν(a′, b′)− ν(a, b)

Putting it all together, for all a,a′ ∈ Rn+ and b, b′ ∈ Rn++:〈
∇ν(a, b), (a′, b′)− (a, b)

〉
=⇒ ν(a, b) ≥ ν(a′, b′)

That is, ν is pseudoconcave.

Lemma 10.3.5 [Variational Stability in the Trading Post Pseudo-Game].

Consider a concave pure exchange economy (X , e,u). The trading post pseudo-game

(A, g,u′) associated with (X , e,u) is pseudomonotone and variationally stable.

Proof of Lemma 10.3.5

Let (A, g,u′) be the the trading post pseudo-game associated with the pure exchange

economy (X , e,u), where for all consumers i ∈ [n], the utility function ui is concave.

First, for all consumers i ∈ [n], u′i depends only on (βi,πi), hence, we redefine

u′i(βi,πi)
.
= u′i(β,π).

Now consider the utilitarian welfare function w(x)
.
=
∑

i∈[n] ui(xi). Since for all

consumers i ∈ [n], ui is concave, w must also be concave, as it is the sum of concave

functions (see, for instance, Section 3.2 of Boyd et al. (2004)). If we then define

w′(β,π)
.
= w(β ⊘ π) =

∑
i∈[n] ui(βi ⊘ πi) =

∑
i∈[n] u

′
i(βi,πi), by Lemma 10.3.4, w′

must be pseudoconcave, since it is the composition of a concave function, namely

w, and the ratio function. Since w′ is pseudcoconcave, −w′ is pseudoconvex, and

hence −∇w′ must be pseudomonotone (see, for instance, Theorem 4.1 of (Aussel
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et al., 1994)). Furthermore,

∇w′(β,π) = (∇u′1(β1,π1), . . . ,∇u′n(βn,πn))

To prove that the trading post pseudo-game is variationally stable (Definition 9.4.2),

we must show that there exists (β∗,π∗) ∈ X ∗ s.t.∑
i∈[n]

〈
∇u′i(βi,πi), (β∗

i ,π
∗
i )− (βi,πi)

〉
≥ 0 ∀(β,π) ∈ X ∗

We define the pseudo-game operator associated with the trading post pseudo-game

as follows:

v(β,π)
.
= −(∇u′1(β1,π1), . . . ,∇u′n(βn,πn))

Then, equivalently, the trading post pseudo-game is variationally stable iff the

set of weak solutions of the VI (X ∗,v) = (X ∗,−∇w′) is non-empty. Since −∇w′

is pseudomonotone and X ∗ is non-empty and compact (Lemma 10.3.3), a weak

solution of (X ∗,−∇w′) is guaranteed to exist. That is, there exists (β∗,π∗) ∈ X ∗ s.t.

for all (β,π) ∈ X ∗,〈
−∇w′(βi,πi), (β

∗
i ,π

∗
i )− (βi,πi)

〉
=
∑
i∈[n]

〈
∇u′i(βi,πi), (β∗

i ,π
∗
i )− (βi,πi)

〉
≥ 0

With the sufficient conditions for the trading post pseudo-game to be variationally stable

in hand, to guarantee polynomial-time convergence of the mirror extragradient learning

dynamics, we have to ensure that the trading post pseudo-game is Lipschitz-smooth. The

following lemma provides necessary conditions to ensure the Lipschitz-smoothness of the

trading post pseudo-game.

Lemma 10.3.6 [Lipschitz-smoothness of Trading Post Pseudo-Game].

Consider a pure exchange economy (X , e,u) s.t. for all consumers i ∈ [n], ui is ℓ-Lipschitz-

continuous, and ∇ui is λ-Lipschitz-continuous, and also the trading post pseudo-game

283



(A, g,u′) associated with the pure exchange economy (X , e,u). If we define:

πmin
.
= min{πij : (βi,πi) ∈ Bi, ∀i ∈ [n], j ∈ [m]} ,

πmax
.
= max{πij : (βi,πi) ∈ Bi,∀i ∈ [n], j ∈ [m]} , and

βmax
.
= max{βij : (βi,πi) ∈ Bi, ∀i ∈ [n], j ∈ [m]} ,

then for all consumers i ∈ [n], u′i ism
[
max

(
λ

π2
min
, β

′
maxλ
π2
min

, ℓ
π2
min

)
+max

(
πmaxλ
πmin

, πmaxλ
π2
min

, ℓ
)]
−Lipschitz-

smooth.

Proof of Lemma 10.3.6

First, note that for all consumers i ∈ [n] and commodities j ∈ [m],

∇βij
u′i(βi,πi) = ∇βij

ui(βi ⊘ πi)

=
∇xij

ui(βi ⊘ πi)

πij
,

and

∇πij
u′i(βi,πi) = ∇πij

ui(βi ⊘ πi)

= −π2ij∇xij
ui(βi ⊘ πi) .

Define ⊙ as the Hadamard product operator, i.e., a⊙ b
.
= (aibi)i. Now, for all i ∈ [n],

j ∈ [m], (βi,πi), (β
′
i,π

′
i) ∈ Bi,∣∣∣∣∣∇xij

ui(βi ⊘ πi)

πij
−
∇xij

ui(β
′
i ⊘ π′

i)

π′ij

∣∣∣∣∣
=

∣∣∣∣∣ 1πij
(
∇xij

ui(βi ⊘ πi)−∇xij
ui(β

′
i ⊘ π′

i)
)
+∇xij

ui(β
′
i ⊘ π′

i)

(
1

πij
− 1

π′ij

)∣∣∣∣∣
≤

∣∣∣∣∣ 1πij
(
∇xij

ui(βi ⊘ πi)−∇xij
ui(β

′
i ⊘ π′

i)
)∣∣∣∣∣+

∣∣∣∣∣∇xij
ui(β

′
i ⊘ π′

i)

(
1

πij
− 1

π′ij

)∣∣∣∣∣
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=
1

πij

∣∣∣(∇xij
ui(βi ⊘ πi)−∇xij

ui(β
′
i ⊘ π′

i)
)∣∣∣+ ∣∣∣∇xij

ui(β
′
i ⊘ π′

i)
∣∣∣ ∣∣∣∣∣ 1πij − 1

π′ij

∣∣∣∣∣
≤ λ

πij

∥∥(βi ⊘ πi)− (β′
i ⊘ π′

i)
∥∥+ ℓ

∣∣∣∣∣ 1πij − 1

π′ij

∣∣∣∣∣
=

λ

πij

∥∥(βi − β′
i)⊘ πi − β′

i ⊙
(
1m ⊘ πi − 1m ⊘ π′

i

)∥∥+ ℓ

∣∣∣∣∣ 1πij − 1

π′ij

∣∣∣∣∣
≤ λ

πij

∥∥(βi − β′
i)⊘ πi

∥∥+ ∥∥β′
i ⊙
(
1m ⊘ πi − 1m ⊘ π′

i

)∥∥+ ℓ

∣∣∣∣∣ 1πij − 1

π′ij

∣∣∣∣∣
≤ λ

πij mink∈[m]{πik}
∥∥βi − β′

i

∥∥+ λ
∥∥β′

i

∥∥∥∥1m ⊘ πi − 1m ⊘ π′
i

∥∥+ ℓ

∣∣∣∣∣ 1πij − 1

π′ij

∣∣∣∣∣
=

λ

πij mink∈[m]{πik}
∥∥βi − β′

i

∥∥+ λ
∥∥β′

i

∥∥∥∥(π′
i − πi

)
⊘
(
πi ⊙ π′

i

)∥∥+ ℓ

∣∣∣∣∣π′ij − πijπijπ
′
ij

∣∣∣∣∣
≤ λ

πij mink∈[m]{πik}
∥∥βi − β′

i

∥∥+ λ ∥β′
i∥

mink∈[m]{πikπ′ik}
∥∥π′

i − πi
∥∥+ ℓ

1

πijπ
′
ij

∣∣π′ij − πij∣∣
≤ λ

πij mink∈[m]{πik}
∥∥βi − β′

i

∥∥+ λ ∥β′
i∥

mink∈[m]{πikπ′ik}
∥∥π′

i − πi
∥∥+ ℓ

1

πijπ
′
ij

∥∥π′
i − πi

∥∥
≤ λ

π2min

∥∥βi − β′
i

∥∥+ β′maxλ

π2min

∥∥π′
i − πi

∥∥+ ℓ
1

π2min

∥∥π′
i − πi

∥∥
≤ max

(
λ

π2min

,
β′maxλ

π2min

,
ℓ

π2min

)∥∥(βi,πi)− (β′
i,π

′
i)
∥∥

Similarly, for all i ∈ [n], j ∈ [m], (βi,πi), (β
′
i,π

′
i) ∈ Bi:∣∣∣πij∇xij

ui(βi ⊘ πi)− π′ij∇xij
ui(β

′
i ⊘ π′

i)
∣∣∣

=
∣∣∣πij (∇xij

ui(βi ⊘ πi)−∇xij
ui(β

′
i ⊘ π′

i)
)
−∇xij

ui(β
′
i ⊘ π′

i)
(
πij − π′ij

)∣∣∣
≤
∣∣∣πij (∇xij

ui(βi ⊘ πi)−∇xij
ui(β

′
i ⊘ π′

i)
)∣∣∣+ ∣∣∣∇xij

ui(β
′
i ⊘ π′

i)
(
πij − π′ij

)∣∣∣
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= πij

∣∣∣∇xij
ui(βi ⊘ πi)−∇xij

ui(β
′
i ⊘ π′

i)
∣∣∣+ ∣∣∣∇xij

ui(β
′
i ⊘ π′

i)
∣∣∣ ∣∣πij − π′ij∣∣

≤ πij
∣∣∣∇xij

ui(βi ⊘ πi)−∇xij
ui(β

′
i ⊘ π′

i)
∣∣∣+ ℓ

∣∣πij − π′ij∣∣
≤ πijλ

∣∣(βi ⊘ πi)− (β′
i ⊘ π′

i)
∣∣− ℓ ∣∣πij − π′ij∣∣

≤ πijλ
∥∥(βi − β′

i)⊘ πi − β′
i ⊙
(
1m ⊘ πi − 1m ⊘ π′

i

)∥∥+ ℓ
∣∣πij − π′ij∣∣

≤ πijλ
∥∥(βi − β′

i)⊘ πi
∥∥+ πijλ

∥∥β′
i ⊙
(
1m ⊘ πi − 1m ⊘ π′

i

)∥∥+ ℓ
∣∣πij − π′ij∣∣

≤
πijλ

mink∈[m] πik

∥∥βi − β′
i

∥∥+ πijλ
∥∥β′

i ⊙
(
1m ⊘ πi − 1m ⊘ π′

i

)∥∥+ ℓ
∣∣πij − π′ij∣∣

≤
πijλ

mink∈[m] πik

∥∥βi − β′
i

∥∥+ πijλ∥β′
i∥
∥∥1m ⊘ πi − 1m ⊘ π′

i

∥∥+ ℓ
∣∣πij − π′ij∣∣

=
πijλ

mink∈[m] πik

∥∥βi − β′
i

∥∥+ πijλ∥β′
i∥
∥∥(πi − π′

i

)
⊘
(
πi ⊙ π′

i

)∥∥+ ℓ
∣∣πij − π′ij∣∣

≤
πijλ

mink∈[m] πik

∥∥βi − β′
i

∥∥+ πijλ{
mink∈[m] πikπ

′
ik

}∥β′
i∥
∥∥πi − π′

i

∥∥+ ℓ
∣∣πij − π′ij∣∣

≤
πijλ

mink∈[m] πik

∥∥βi − β′
i

∥∥+ πijλ{
mink∈[m] πikπ

′
ik

}∥β′
i∥
∥∥πi − π′

i

∥∥+ ℓ
∥∥πi − π′

i

∥∥
≤ πmaxλ

πmin

∥∥βi − β′
i

∥∥+ πmaxλ

π2min

∥βmax∥
∥∥πi − π′

i

∥∥+ ℓ
∥∥πi − π′

i

∥∥
≤ max

(
πmaxλ

πmin

,
πmaxλ

π2min

, ℓ

)∥∥(βi,πi)− (β′
i,π

′
i)
∥∥

Putting it all together, for all consumers i ∈ [n],∥∥∇u′
i(βi,πi)−∇u′

i(β
′
i,π

′
i)
∥∥

≤
∑
j∈[m]

∥∥∥∇βij
u′
i(βi,πi)−∇βij

u′
i(β

′
i,π

′
i)
∥∥∥+ ∑

j∈[m]

∥∥∥∇πij
u′
i(βi,πi)−∇πij

u′
i(β

′
i,π

′
i)
∥∥∥

≤
∑
j∈[m]

max

(
λ

π2
min

,
β′
maxλ

π2
min

,
ℓ

π2
min

)∥∥(βi,πi)− (β′
i,π

′
i)
∥∥

+
∑
j∈[m]

max

(
πmaxλ

πmin

,
πmaxλ

π2
min

, ℓ

)∥∥(βi,πi)− (β′
i,π

′
i)
∥∥

= mmax

(
λ

π2
min

,
β′
maxλ

π2
min

,
ℓ

π2
min

)∥∥(βi,πi)− (β′
i,π

′
i)
∥∥+mmax

(
πmaxλ

πmin

,
πmaxλ

π2
min

, ℓ

)∥∥(βi,πi)− (β′
i,π

′
i)
∥∥

= m

[
max

(
λ

π2
min

,
β′
maxλ

π2
min

,
ℓ

π2
min

)
+max

(
πmaxλ

πmin

,
πmaxλ

π2
min

, ℓ

)]∥∥(βi,πi)− (β′
i,π

′
i)
∥∥
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Remark 10.3.4 [Boundedness of bid space].

Recall that in the trading post pseudo-game, the action spaces Bi of the players i ∈ [n], are

compact by definition. As such, πmin, πmax, βmax are all guaranteed to exist.

With sufficient conditions that ensure the Lipschitz-smoothness of the trading post pseudo-

game, we combine Lemma 10.3.2, Lemma 10.3.5, Lemma 10.3.6, and Theorem 4.3.1 to arrive

at the following theorem.

Theorem 10.3.1 [Convergence of Mirror Extratrade Learning Dynamics].

Consider a concave pure exchange economy (X , e,u), where for all players i ∈ [n], ui is

ℓ-Lipschitz-continuous and λ-Lipschitz-smooth. Let (A, g,u′) be the trading post pseudo-

game (Definition 10.2.1) associated with the pure exchange economy (X , e,u), and h a

1-strongly-convex and κ-Lipschitz-smooth kernel function. Define:

πmin
.
= min{πij : (βi,πi) ∈ Bi, ∀i ∈ [n], j ∈ [m]} ,

πmax
.
= max{πij : (βi,πi) ∈ Bi, ∀i ∈ [n], j ∈ [m]} ,

βmax
.
= max{βij : (βi,πi) ∈ Bi, ∀i ∈ [n], j ∈ [m]} ,

and

λ′
.
= m

[
max

(
λ

π2min

,
β′maxλ

π2min

,
ℓ

π2min

)
+max

(
πmaxλ

πmin

,
πmaxλ

π2min

, ℓ

)]
.

Consider the mirror extratrade dynamics, i.e., the mirror extragradient learning dynamics

(Algorithm 7) applied to the trading post pseudo-game, run on the trading post pseudo-

game (A, g,u′) with the kernel function h, a step size η ∈
(
0, 1√

2λ′

]
, and any time horizon

τ ∈ N. The output sequence {(β(t+0.5),π(t+0.5)), (β(t),π(t))}t satisfies the following: If

(β
(τ)
best,π

(τ)
best) ∈ argmin(β(k),π(k)):k=0,...,τ divh((β

(k+0.5),π(k+0.5)), (β(k),π(k))), then for of τ ∈

O(1/ε2), (β(τ)
best,π

(τ)
best) is a ε-first-order VE of (A, g,u′). In addition, if we define p(t) .

=∑
k∈[n] β

(t)
k and x

(t)
i

.
= β

(t)
i ⊘ π

(t)
i , then limt→∞(x(t),p(t)) = (x∗,p∗) is an Arrow-Debreu

equilibrium of (X , e,u).
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10.4 Merit Function Methods for Arrow-Debreu Economies

10.4.1 Merit Functions for Arrow-Debreu Economies

In this section, we investigate the computation of Arrow-Debreu equilibrium beyond pure

exchange economies. As the efficient computation of an Arrow-Debreu equilibrium seems

out of reach beyond pure exchange economies, we will loosen our aim of computing an

Arrow-Debreu equilibrium to the computation of prices and consumptions that satisfy

necessary conditions to be an Arrow-Debreu equilibrium. Our approach to computing

such prices and consumptions will be to introduce two separate polynomial-time first- and

second-order methods, which we will derive via merit function minimization.

In particular, we will consider the Arrow-Debreu pseudo-game whose set of GNE is equal

to the set of Arrow-Debreu competitive equilibria of the associated Arrow-Debreu economy,

and then apply the merit function methods for pseudo-games we derived in Section 9.4

to compute an action profile that satisfies necessary condition to be a GNE of the Arrow-

Debreu pseudo-game, thus also resulting in prices and consumptions that satisfy necessary

conditions to be an Arrow-Debreu equilibrium.

First, let’s recall the Arrow-Debreu pseudo-game (Definition 10.2.1), which consists of the

following n+ 1 simultaneous optimization problems:

∀i ∈ [n], max
xi∈X ′

i :xi·p≤ei·p
ui(xi) max

p∈∆m

p ·

∑
i∈[n]

xi −
∑
i∈[n]

ei


Now, as this pseudo-game does not have jointly convex constraints, a VE is not guaranteed

to exist; as such, none of the methods we derived in Section 9.4 are applicable. To overcome

this difficulty, we instead leverage Theorem 9.2.3, which allows us to convert the Arrow-

Debreu pseudo-game into a 2n+ 1 player game, and apply our merit function methods to

solve this game.

Definition 10.4.1 [Arrow-Debreu Game].

Given an Arrow-Debreu economy (X , e,u), we define the associated (2n+1)-player Arrow-
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Debreu game (n+ 1, 1,A,u′), denoted (A,u′) when n is clear from context, in which the

first n players are called “consumers”, the players n through 2n are called the “shadow

consumers,” and the (2n+ 1)th player is called the “auctioneer,” and where:

(Action spaces) For all consumers i ∈ [n], Ai
.
= X ′

i
.
={

xi |
∑

k∈[n] xk ≤
∑

k∈[n] ek, ∀x ∈ X
}

,

for all shadow consumers i ∈ [n, 2n], Ai
.
= Λi ⊆ R+,

and for the auctioneer A2n+1
.
= ∆m

(Payoffs) For all consumers i ∈ [n], u′i(x,λ,p)
.
= ui(xi) + λi (ei · p − xi · p),

for all shadow consumers i ∈ [n, 2n], u′i(x,λ,p)
.
= −ui(xi) −

λi (ei · p − xi · p),

and for the auctioneer, u′n+1(x,λ,p)
.
= p ·

(∑
i∈[n] xi −

∑
i∈[n] ei

)
.

The Arrow-Debreu game can succinctly be represented by the following 2n+1 simultaneous

optimization problems:

∀i ∈ [n], max
xi∈X ′

i

min
λi≥0

ui(xi) + λi (ei · p − xi · p) max
p∈∆m

p ·

∑
i∈[n]

xi −
∑
i∈[n]

ei


We note that a naive choice for the action spaces of the shadow consumers is for all

i ∈ [n, 2n], Λi
.
= R+. To ensure polynomial-time convergence of our algorithm, however, it

will be necessary to instead choose a non-empty and compact Λi, to ensure that the players’

utility functions are Lipschitz-smooth. While we will not delve in the details of how to

choose such action spaces—to keep our exposition simple, we will only present informal

expositions of our theorems—we note that under Slater’s condition, which is satisfied in

quasiconcave Arrow-Debreu economies, it is possible to define such a set. For additional

details, we refer the reader to Nedić and Ozdaglar (2009) and Nedic and Ozdaglar (2009),

as well as Definition 9.2.6.

Now, notice that in quasiconcave Arrow-Debreu economies, Slater’s condition is guaran-

teed to hold. As such, we have the following corollary of Theorem 9.2.3 and Lemma 10.2.1:
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Corollary 10.4.1.

Given a quasiconcave Arrow-Debreu economy (X , e,u), consider the associated Arrow-

Debreu game (A,u′). For any Arrow-Debreu equilibrium (x∗,p∗) of the Arrow-Debreu

economy (X , e,u), there exists λ∗ ∈ Λ s.t. (x∗,λ∗,p∗) is a Nash equilibrium of the Arrow-

Debreu game (A,u′).

Conversely, the consumptions and prices (x∗,p∗) of any Nash equilibrium (x∗,λ∗,p∗)

of the Arrow-Debreu game (A,u′) correspond to an Arrow-Debreu equilibrium of the

Arrow-Debreu economy (X , e,u).

10.4.2 First-Order Market Dynamics for Merit Function Minimization

With this corollary in hand, we can now apply REDA (Algorithm 9) to compute a stationary

point of the regularized exploitability associated with the Arrow-Debreu game, or alterna-

tively Algorithm 10 to compute a stationary point of the variational exploitability associated

with the Arrow-Debreu game. Our first theorem is a corollary of Theorem 9.4.3, which we

present informally to avoid burdening our exposition with highly involved bounds which

depend on the Lipschitz-smoothness constant of the utility functions of the consumers and

the radius of the action space of the shadow consumers.

Theorem 10.4.1 [Convergence of REDA in the Arrow-Debreu Game].

Given an Arrow-Debreu economy (X , e,u), consider the associated Arrow-Debreu game

(A,u′), and assume that for all consumers i ∈ [n], ui is Lipschitz-smooth, and for all

shadow consumers i ∈ [n, 2n], the action spaces Ai
.
= Λi are non-empty, compact, convex

and contain the Nash equilibrium actions of the shadow consumers. For ε, α > 0, if φα be

the α-regularized exploitability associated with the Arrow-Debreu game, h is a 1-strongly-

convex kernel function, and x(0),λ(0),p(0) ∈ A are some initial actions, then for some

appropriate choice of η > 0 and τ ∈ O(1/ε2), the regularized extragradient descent ascent

algorithm (REDA; Algorithm 9) is guaranteed to compute an ε-stationary point of the

α-regularized exploitability φα.
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10.4.3 Second-Order Market Dynamics for Merit Function Minimization

Similar to Theorem 10.4.1, we also obtain the following corollary of Theorem 9.6.2 for

the convergence of the mirror variational learning dynamics when applied to the Arrow-

Debreu game.

Theorem 10.4.2.

Given an Arrow-Debreu economy (X , e,u), consider the associated Arrow-Debreu game

(A,u′), and assume that for all consumers i ∈ [n], ui is Lipschitz-smooth, and for all

shadow consumers i ∈ [n, 2n], the action spaces Ai
.
= λi are non-empty, compact, convex

and contain the Nash equilibrium actions of the shadow consumers. For ε, α > 0, if Ξα is

the α-variational exploitability associated with the Arrow-Debreu game, h is a 1-strongly-

convex kernel function, and x(0),λ(0),p(0) ∈ A are some initial actions, then for some

appropriate choice of η > 0 and τ ∈ O(1/ε), the mirror variational learning dynamics is

guaranteed to compute an ε-stationary point of the α-variational exploitability Ξα.

291



Part III

Markov Pseudo-Games and Radner
Economies
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Chapter 11

Scope and Motivation

11.1 Scope

Part III of this thesis is divided into two chapters. In Chapter 12, we1 introduce our model

of Markov pseudo-games (Section 12.1) and define appropriate solution concepts, i.e., equi-

libria, in Section 12.2, where we establish their existence under suitable conditions. We then

present a gradient descent-ascent-based reinforcement learning algorithm (Algorithm 11;

TTSSGDA), which provably converges to a solution satisfying the necessary equilibrium

conditions via a coupled min-max optimization formulation of the problem (Section 12.3).

In Chapter 13, we apply our theory to Radner economies (or infinite-horizon Markov

exchange economies). First, we formulate static exchange economies, i.e., spot markets,

as generalized (one-shot) games. Next, we develop infinite-horizon Radner economies by

modeling them as instances of our Markov pseudo-games framework. We then invoke our

main theorems for Markov pseudo-games to establish the existence of recursive Radner

equilibria in Radner economies—the first such result to our knowledge—as well as the

convergence of TTSSGDA to this equilibrium. Finally, we present experiments confirming

the accuracy and efficiency of TTSSGDA in practice.

1The work in Part III was developed in collaboration with Sadie Zhao, Yiling Chen, and Amy Greenwald.
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11.2 Motivation

In 1896, Léon Walras formulated a mathematical model of markets as a system for resource

allocation comprising supply and demand functions that map values for resources, called

prices, to quantities of resources—ceteris paribus, i.e., all else being equal. Walras argued

that any market would eventually settle into a steady state, which he called competitive

(nowadays, also called Walrasian) equilibrium, as a collection of prices and associated

supply and demand such that the demand is feasible, i.e., the demand for each resource

is less than or equal to its supply, and Walras’ law holds, i.e., the value of the supply is

equal to the value of the demand. Unlike in Walras’ model, real-world markets do not exist

in isolation but are part of an economy. Indeed, the supply and demand of resources in

one market depend not only on prices in that market, but also on the supply and demand

of resources in other markets. If every market in an economy is simultaneously at a

competitive equilibrium, Walras’ law holds for the economy as a whole; this steady state,

now a property of the economy, is called a general equilibrium.

Beyond Walras’ early forays into competitive equilibrium analysis, foremost to the devel-

opment of the theory of general equilibrium was the introduction of a broad mathematical

framework for modeling economies, which is known today as the Arrow-Debreu competi-

tive economy (Arrow and Debreu, 1954). In this same paper, Arrow and Debreu developed

their seminal game-theoretic model, namely (quasi)concave pseudo-games, and proved the

existence of generalized Nash equilibrium in this model. Since this game-theoretic model

is sufficiently rich to capture Arrow-Debreu economies, they obtained as a corollary the

existence of general equilibrium in these economies.

In their model, Arrow and Debreu posit a set of resources, modeled as commodities, each of

which is assigned a price; a set of consumers, each choosing a quantity of each commodity

to consume in exchange for their endowment; and a set of firms, each choosing a quantity

of each commodity to produce, with prices determining (aggregate) demand, i.e., the

sum of the consumptions across all consumers, and (aggregate) supply, i.e., the sum of

294



endowments and productions across all consumers and firms, respectively. This model is

static, as it comprises only a single period model, but it is nonetheless rich, as commodities

can be state and time contingent, with each one representing a good or service which can

be bought or sold in a single time period, but that encodes delivery opportunities at a

finite number of distinct points in time. Following Arrow and Debreu’s seminal existence

result, the literature slowly turned away from static economies, such as Arrow-Debreu

competitive economies, which do not explicitly involve time and uncertainty.

Arrow and Debreu’s model fails to provide a comprehensive account of the economic

activity observed in the real world, especially that which is designed to account for time

and uncertainty. Chief among these activities are asset markets, which allow consumers

and firms to insure themselves against uncertainty about future states of the world. Indeed,

while static economies with state- and time-contingent commodities can implicitly incorpo-

rate time and uncertainty, the assumption that a complete set of state- and time-contingent

commodities are available at the time of trade is highly unrealistic. Arrow (1964) thus

proposed to enhance the Arrow-Debreu competitive economy with assets (or securities

or stocks),2 i.e., contracts between two consumers, which promise the delivery of com-

modities by its seller to its buyer at a future date. In particular, Arrow introduced an asset

type nowadays known as the numéraire Arrow security, which transfers one unit of a

designated commodity used as a unit of account—the numéraire—when a particular state

of the world is observed, and nothing otherwise. As the numéraire is often interpreted

as money, assets which deliver only some amount of the numéraire, are called financial

assets.

Formally, Arrow considered a two-step stochastic exchange economy. In the initial state,

consumers can buy or sell numéraire Arrow securities in a financial asset market. Following

these trades, the economy stochastically transitions to one of finitely many other states in

2Some authors (e.g., Geanakoplos (1990)) distinguish between assets, stocks, and securities, instead defining
securities (respectively, stocks) as those assets which are defined exogenously (respectively, endogenously), e.g.,
government bonds (respectively, company stocks). As this distinction makes no mathematical difference to our
results, and is only relevant to stylized models, we make no such distinction.

295



which consumers receive returns on their initial investment and participate in a spot market,

i.e., a market for the immediate delivery of commodities, modeled as a static exchange

economy—which, for our purposes, is better called an exchange market.3 A general

equilibrium of this economy is then simply prices for financial assets and commodities,

which lead to a feasible allocation of all resources (i.e., financial assets and spot market

commodities) that satisfies Walras’ law.

Arrow (1964) demonstrated that the general equilibrium consumptions of an exchange

economy with state- and time-contingent commodities can be implemented by the general

equilibrium spot market consumptions of a two-step stochastic economy with a consider-

ably smaller, yet complete set of numéraire Arrow securities, i.e., a set of securities available

for purchase in the first period that allow consumers to transfer wealth to all possible states

of the world that can be realized in the second period. In conjunction with the welfare

theorems (Debreu, 1951a; Arrow, 1951b), this result implies that economies with complete

financial asset markets, i.e., economies with such a complete set of securities, achieve a

Pareto-optimal allocation of commodities by ensuring optimal risk-bearing via financial

asset markets; and conversely, any Pareto-optimal allocation of commodities in economies

with time and uncertainty can be realized as a competitive equilibrium of a complete

financial asset market.

Arrow’s contributions led to the development of a new class of general equilibrium mod-

els, namely stochastic economies (or dynamic stochastic general equilibrium—DSGE—

models) (Geanakoplos, 1990).4 At a high-level, these models comprise a sequence of world

states and spot markets, which are linked across time by asset markets, with each next

state of the world (respectively, spot market) determined by a stochastic process that is

independent of market interactions (respectively, dependent only on their asset purchase)

3An (Arrow-Debreu) exchange economy is simply an (Arrow-Debreu) competitive economy without firms.
Historically, for simplicity, it has become standard practice not to model firms, as most, if not all, results extend
directly to settings with firms. In line with this practice, we do not model firms, but note that our results and
methods also extend directly to settings that include firms.

4As these models incorporate both time and uncertainty, they are often referred to as dynamic stochastic
general equilibrium models. Nonetheless, we opt for the stochastic economy nomenclature, because, as we
demonstrate in this paper, these economies can be seen as instances of (generalized) stochastic games.
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in the current state. Mathematically, the key difference between a static and a stochastic

economy is that consumers in a stochastic economy face a collection of budget constraints,

one per time-step, rather than only one. Indeed, Arrow (1964)’s proof that general equilib-

rium consumptions in stochastic complete economies are equivalent to general equilibrium

consumptions in static state- and time-contingent commodity economies relies on proving

that the many budget constraints in a complete stochastic economy can be reduced to a

single one.

Stochastic economies were introduced to model arbitrary finite time horizons (Radner,

1968) and a variety of risky asset classes (e.g., stocks (Diamond, 1967), risky assets (Lintner,

1975), derivatives (Black and Scholes, 1973), capital assets (Mossin, 1966), debts (Modigliani

and Miller, 1958) etc.), eventually leading to the emergence of stochastic economies with

incomplete asset markets (Magill and Shafer, 1991; Magill and Quinzii, 2002; Geanakoplos,

1990), or colloquially, (incomplete) stochastic economies.5 Unlike in Arrow’s stochas-

tic economy, the asset market is not complete in such economies, so consumers cannot

necessarily insure themselves against all future world states.

The archetypal stochastic economy is the Radner stochastic exchange economy, deriving

its name from Radner’s proof of existence of a general equilibrium in his model (Radner,

1972). Radner’s economy is a finite-horizon stochastic economy comprising a sequence

of spot markets, linked across time by asset markets. At each time period, a finite set of

consumers observe a world state and trade in an asset market and a spot market, modeled

as an exchange market. Each asset market comprises assets, modelled as time-contingent

generalized Arrow securities, which specify quantities of the commodities the seller is

obliged to transfer to its buyer, should the relevant state of the economy be realized at

some specified future time.6 Consumers can buy and sell assets, thereby transferring their

5While many authors have called these models incomplete economies (Geanakoplos, 1990; Magill and
Quinzii, 2002; Magill and Shafer, 1991), these models capture both incomplete and complete asset markets. In
contrast, we refer to stochastic economies with incomplete or complete asset markets as stochastic economies,
adding the (in)complete epithet only when necessary to indicate that the asset market is (in)complete.

6Here, Arrow securities are “generalized” in the sense that they can deliver different quantities of many
commodities at different states of the world, rather than only one unit of a commodity at only one state of the
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wealth across time, all the while insuring themselves against uncertainty about the future.

The canonical solution concept for stochastic economies, Radner equilibrium (also called

sequential competitive equilibrium7 (Mas-Colell et al., 1995), rational expectations equi-

librium (Radner, 1979), and general equilibrium with incomplete markets (Geanakoplos,

1990)), is a collection of history-dependent prices for commodities and assets, as well as

history-dependent consumptions of commodities and portfolios of assets, such that, for

all histories, the aggregate demand for commodities and the aggregate demand for assets

(i.e., the total number of assets bought) are feasible and satisfy Walras’ law.

In spite of substantial interest in stochastic economies among microeconomists throughout

the 1970s, the literature eventually trailed off, perhaps due to a seemingthe difficulty inof

proving existence of a general equilibrium in simple economies with incomplete asset

markets that allow assets to be sold short (Geanakoplos, 1990), or to the lack of a second

welfare theorem (Dreze, 1974; Hart, 1975). Financial and macroeconomists stepped up,

however, with financial economists seeking to further develop the theoretical aspects of

stochastic economies (see, for instance, Magill and Quinzii (2002)), and macroeconomists

seeking practical methods by which to solve stochastic economies in order to determine the

impact of various policy choices (via simulation; see, for instance, Sargent and Ljungqvist

(2000)).

Radner economies are one of the new and interesting directions in this more recent work

on stochastic economies. Infinite horizon models come with one significant difficulty that

has no counterpart in a finite horizon model, namely the possibility for agents to run a

Ponzi scheme via asset markets, in which they borrow but then indefinitely postpone

repaying their debts by refinancing them continually, from one period to the next. From

this perspective infinite horizon models represent very interesting objects of study, not

only theoretically; it has also been argued that they are a better modeling paradigm

world. Although Arrow (1964) considered only numéraire securities, his theory was subsequently generalized
to generalized Arrow securities (Geanakoplos, 1990).

7This terminology does not contradict the economy being at a competitive equilibrium, but rather indicates
that at all times, the spot and asset markets are at a competitive equilibrium, hence implying the overall
economy is at a general equilibrium.
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for macroeconomists who employ simulations (Magill and Quinzii, 1994), because they

facilitate the modeling of complex phenomena, such as asset bubbles (Huang and Werner,

2000), which can be impacted by economic policy decisions.

Magill and Quinzii (1994) introduced an extension of Radner’s model to an infinite horizon

setting, albeit with financial assets, and presented suitable assumptions under which a

sequential competitive equilibrium is guaranteed to exist in this model. Progress on the

computational aspects of stochastic economies has been slow, however, and mostly confined

to finite horizon settings (see, Sargent and Ljungqvist (2000) and Volume 2 of Taylor and

Woodford (1999) for a standard survey, and Fernández-Villaverde (2023) for a more recent

entry-level survey of computational methods used by macroeconomists). Indeed, demands

for novel computational methods for solving macroeconomic models, and theoretical

frameworks in which to understand their computational complexity, have been repeatedly

shared by macroeconomists (Taylor and Woodford, 1999). This gap in the literature points

to a novel research opportunity; however, it is challenging for non-macroeconomists to

approach these problems with their computational tools.

11.3 Contributions

In Chapter 12, we introduce Markov pseudo-games, and we establish the existence of

(pure) generalized Markov perfect equilibria (GMPE) in concave Markov pseudo-games

(Theorem 12.2.1). This result can be seen as a stochastic generalization of Arrow and Debreu

(1954)’s existence result for (pure) generalized Nash equilibrium in concave pseudo-games

(Facchinei and Kanzow, 2010a). It also implies the existence of pure (or deterministic)

Markov perfect equilibria in a large class of continuous-action Markov games for which, to

the best of our knowledge, existence was heretofore known only in mixed (or randomized)

policies (Fink, 1964; Takahashi, 1964).

Although the computation of GMPE is PPAD-hard in general, because GMPE generalize

Nash equilibrium, we reduce this computational problem to generative adversarial learning
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between a generator, who produces a candidate equilibrium policy profile, and an adver-

sary, who produces a policy profile of best responses to the candidate equilibrium (Goktas

et al., 2023a) (Observation 12.3.1). Assuming parameterized policies, and taking advantage

of the recent progress on solving generative adversarial learning problems (e.g., (Lin et al.,

2020; Daskalakis et al., 2020a)), we show that a policy profile that is a stationary point

of the exploitability (i.e., the players’ cumulative maximum regret) can be computed in

polynomial time under mild assumptions (Theorem 12.3.1). This result implies that a policy

profile that satisfies necessary first-order stationarity conditions for a GMPE in Markov

pseudo-games with a bounded best-response mismatch coefficient (Lemma 12.3.4)—i.e.,

those Markov pseudo-games in which states explored by any GMPE are easily explored

under the initial state distribution—can be computed in polynomial time, a result which

is analogous known computational results for zero-sum Markov games (Daskalakis et al.,

2020a). As our theoretical computational guarantees apply to policies represented by neural

networks, we obtain the first, to our knowledge, deep reinforcement learning algorithm

with theoretical guarantees for general-sum games.

In Chapter 13, we introduce an extension of Magill and Quinzii (1994)’s infinite horizon

exchange economy, which we call the Radner economy. On the one hand, our model

generalizes Magill and Quinzii’s to a setting with arbitrary, not just financial, assets; on

the other hand, we restrict the transition model to be Markov. The Markov restriction

allows us to prove the existence of a recursive Radner equilibrium (RRE) (Mehra and

Prescott, 1977) (Theorem 13.1.1). Our proof reformulates the set of RRE of any Radner

economy as the set of GMPE of an associated generalized Markov game (Theorem 13.1.1).

To our knowledge, ours is the first result of its kind for such a general setting, as previous

recursive competitive equilibrium existence proofs were restricted to economies with one

consumer (also called the representative agent), one commodity, or one asset (Mehra and

Prescott, 1977; Prescott and Mehra, 1980). The aforementioned results allow us to conclude
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that a stationary point of the exploitability of the Markov pseudo-game associated with

any Radner economy can be computed in polynomial time (Theorem 13.1.2).

Finally, in Section 13.2 we implement our policy gradient method in the form of a genera-

tive adversarial policy network (GAPNet), and use it to try to find RRE in three Radner

economies with three different types of utility functions. Experimentally, we find that our

GAPNet produces approximate equilibrium policies that are closer to GMPE than those

produced by a standard macroeconomic baseline for solving stochastic economies.
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Chapter 12

Markov Pseudo-Games

12.1 Background

12.1.1 Mathematical Background

Throughout, we adopt the following notational shorthand: If a function f : X → R is

Lipschitz-continuous (resp. Lipschitz-smooth), for simplicity, we will denote its Lipschitz-

continuity (resp. Lipschitz-smoothness) constant by ℓf ≥ 0 (resp. ℓ∇f ≥ 0).

We will also require notions of stochastic convexity related to stochastic dominance of

probability measures (Atakan, 2003b).

Definition 12.1.1 [Stochastic Convexity/Concavity].

Given non-empty and convex parameter and outcome spaces W and O respectively, a

conditional probability distribution w 7→ ρ(· | w) ∈ ∆(O) is said to be stochastically

convex (resp. stochastically concave) in w ∈ W if for all continuous, bounded, and convex

(resp. concave) functions v : O → R, λ ∈ (0, 1), and w′,w† ∈ W s.t. w = λw′ + (1− λ)w†,

it holds that EO∼ρ(·|w) [v(O)] ≤ (resp. ≥) λEO∼ρ(·|w′) [v(O)] + (1− λ)EO∼ρ(·|w†) [v(O)].

12.1.2 Markov Pseudo-Games

We begin by developing our formal game model. The games we study are stochastic, in the

sense of Shapley (1953), Fink (1964), and Takahashi (1964). Further, they are pseudo-games,

in the sense of Arrow and Debreu (1954). Arrow and Debreu introduced pseudo-games to
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establish the existence of competitive equilibrium in their seminal model of an exchange

economy, where an auctioneer sets prices that determine the consumers’ budget sets, and

hence their feasible consumptions. It is this dependency among the players’ feasible actions

that characterizes pseudo-games. We model stochastic pseudo-games, and dub them

Markov pseudo-games, as the games are Markov in that the stochastic transitions depend

only on the most recent state and player actions.

An (infinite horizon discounted) Markov pseudo-gameM .
= (n,m,S,A,X , r, ρ, γ, µ) is

an n-player dynamic game played over an infinite discrete time horizon. The game starts

at time t = 0 in some initial state S(0) ∼ µ ∈ ∆(S) drawn randomly from a set of states

S ⊆ Rl. At this and each subsequent time period t = 1, 2, . . ., the players encounter a

state s(t) ∈ S, in which each i ∈ [n] simultaneously takes an action a
(t)
i ∈ Xi(s(t),a

(t)
−i)

from a set of feasible actions Xi(s(t),a
(t)
−i) ⊆ Ai ⊆ Rm , determined by a feasible action

correspondence Xi : S×A−i ⇒ Ai, which takes as input the current state s(t) and the other

players’ actions a
(t)
−i ∈ A−i, and outputs a subset of the ith player’s action space Ai. We

define X (s,a)
.
=×i∈[n]Xi(s,a−i).

Once the players have taken their actions a(t) .= (a
(t)
1 , . . . ,a

(t)
n ), each player i ∈ [n] receives

a reward ri(s
(t),a(t)) given by a reward function r : S × A → Rn, after which the game

either ends with probability 1−γ, where γ ∈ (0, 1) is called the discount factor,1 or continues

on to time period t + 1, transitioning to a new state S(t+1) ∼ ρ(· | s(t),a(t)), according to

a transition probability function ρ : S × S × A → [0, 1], where ρ(s(t+1) | s(t),a(t)) ∈ [0, 1]

denotes the probability of transitioning to state s(t+1) ∈ S from state s(t) ∈ S when action

profile a(t) ∈ A is played.

Our focus is on continuous-state and continuous-action Markov pseudo-games, where

the state and action spaces are non-empty and compact, and the reward functions are

continuous and bounded in each of s and a, holding the other fixed.

1Our results generalize to settings with per-player discount factors γi ∈ (0, 1), where the discount rates
express the players’ intertemporal preferences over game outcomes at each time-step. .
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A history h ∈ Hτ .
= (S ×A)τ × S of length τ ∈ N is a sequence of states and action profiles

h = ((s(t),a(t))τ−1
t=0 , s

(τ)) s.t. a history of length 0 corresponds only to the initial state of the

game. For any history h = ((s(t),a(t))τ−1
t=0 , s

(τ)) of length τ ∈ N, we denote by h:τ ′ the first

τ ′ ∈ [0 : τ ] steps of h, i.e., h:τ ′ = ((s(t),a(t))τ
′−1
t=0 , s

(τ ′)).

Overloading notation, we define the history spaceH .
=
⋃∞
τ=0Hτ . For any player i ∈ [n], a

policy πi : H → Ai is a mapping from histories of any length to i’s space of (pure) actions.

We define the space of all (deterministic) policies as Pi
.
= {πi : H → Ai}.2 A Markov policy

(Maskin and Tirole, 2001) πi is a policy s.t. πi(s
(τ)) = πi(h:τ), for all histories h ∈ Hτ of

length τ ∈ N+, where s(τ) denotes the final state of history h. As Markov policies are only

state-contingent, we can compactly represent the space of all Markov policies for player

i ∈ [n] as Pmarkov
i

.
= {πi : S → Ai}.

Fixing player i ∈ [n] and π−i ∈ P−i, given history h ∈ Hτ , we define the feasible policy

correspondence

Fi(π−i)
.
= {πi ∈ Pi | ∀h ∈ H,πi(h) ∈ Xi(s(τ),π−i(h))},

and for any Psub ⊆ Pmarkov, the feasible subclass policy correspondence

F sub
i (π−i)

.
= {πi ∈ Psub

i | ∀s ∈ S,πi(s) ∈ Xi(s,π−i(s))}.

Of particular interest is Fmarkov
i (π−i) itself, obtained when Psub = Pmarkov.

Given a policy profile π ∈ P and a history h ∈ Hτ , we define the discounted history

distribution assuming initial state distribution µ as

νπ ,τµ (h) = µ(s(0))

τ−1∏
t=0

γtρ(s(t+1) | s(t),a(t))1{π(h:t )}(a
(t)).

Overloading notation, we also define the set of all realizable trajectories Hπ of length

τ under policy π as Hπ .
= supp(ν

π ,τ
µ ), i.e., the set of all histories that occur with non-

zero probability. We then denote by νπµ
.
= ν

π ,∞
µ , and by H =

(
S(0), (A(t), S(t+1))τ−1

t=0

)
any

2A mixed policy is simply a distribution over pure policies, i.e., an element of ∆(Pi). Moreover, any mixed
policy can be equivalently represented as a mapping πmixed

i : H → ∆(Ai) from histories to distributions over
actions s.t. at any history h ∈ H, player i plays action ai ∼ πi(h). An analogous definition extends directly to
mixed Markov policies as well.
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randomly sampled history from ν
π ,τ
µ . Finally, we define the discounted state-visitation

distribution, again assuming initial state distribution µ, as

δπµ (s) =

∞∑
τ=0

∫
h∈Hπ :s(τ)=s

νπ ,τµ (h).

For any policy profile π ∈ P , the state-value function vπ : S → Rn and the action-value

function qπ : S ×A → Rn are defined, respectively, as

vπ (s)
.
= E

S(t+1)∼ρ(·|S(t),A(t))

[ ∞∑
t=0

r(S(t), A(t)) | S(0) = s, A(t) = π(S(t))

]
(12.1)

qπ (s,a)
.
= E

S(t+1)∼ρ(·|S(t),A(t))

[ ∞∑
t=0

r(S(t), A(t)) | S(0) = s, A(0) = a, A(t+1) = π(S(t+1))

]
.

(12.2)

Overloading notation, for any arbitrary initial state distribution υ ∈ ∆(S) and policy profile

π , we denote by vπ (υ)
.
= ES∼υ [vπ (S)].

Finally, the (expected cumulative) payoff associated with policy profile π ∈ P is given by

u(π)
.
= vπ (µ).
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12.2 Solution Concepts and Existence

Having defined our model, we now define two natural solution concepts, and establish

their existence. Our first solution concept is based on the usual notion of Nash equilibrium

(1950b), yet applied to Markov pseudo-games. Our second is based on the notion of

subgame-perfect equilibrium in extensive-form games, a strengthening of Nash equilibrium

with the additional requirement that an equilibrium be Nash not just at the start of the game,

but at all states encountered during play. In the context of stochastic games, such equilibria

are called “recursive,” or “Markov perfect.” Following Bellman (1966) and Arrow and

Debreu (1954), we identify natural assumptions that guarantee the existence of equilibrium

in (pure) Markov policies, meaning deterministic policies that depend only on the current

state, not on the history. When applied to Radner economies, this theorem implies existence

of (pure) recursive Radner equilibrium, to our knowledge the first result of its kind.

Definition 12.2.1 [Approximate Generalized Nash Equilibrium].

An ε-generalized Nash equilibrium (ε-GNE) π∗ ∈ F (π∗) is a policy profile s.t. for all

states s ∈ S and players i ∈ [n],

ui(π
∗) ≥ max

πi∈Fi(π
∗
−i)
ui(πi,π

∗
−i)− ε .

We call a 0-GNE simply a GNE.

Definition 12.2.2 [Approximate Generalized Markov Perfect Equilibrium].

An ε-generalized Markov perfect equilibrium (ε-GMPE) π∗ ∈ Fmarkov(π∗) is a Markov

policy profile s.t. for all states s ∈ S and players i ∈ [n],

v
π∗

i (s) ≥ max
πi∈Fi(π

∗
−i)
v
(πi,π

∗
−i)

i (s)− ε .

We call a 0-GMPE simply a GMPE.

As GMPE is a stronger notion than GNE, every ε-GMPE is an ε-GNE.

Our existence result is based on two assumptions, one set of assumptions on the game,

and another set of assumptions on the policy subclass for which existence is sought. The
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following assumption on the Markov pseudo-game ensures that the Markov pseudo-game

is “continuous” and “concave”.

Assumption 12.2.1 [Concave Markov Pseudo-game].

For all players i ∈ [n], assume

1. Ai is convex

2. Xi(s, ·) is upper- and lower-hemicontinuous, for all s ∈ S

3. Xi(s,a−i) is non-empty, convex, and compact, for all s ∈ S and a−i ∈ A−i

4. For any policy π ∈ P , ai 7→ q
π
i (s,ai,a−i) is continuous and concave overXi(s,a−i),

for all s ∈ S and a−i ∈ A−i

The following assumption of the policy subclass ensures that the policy subclass is expres-

sive and well-behaved enough for it to represent a GMPE. We note that the set of Markov

policies by definition satisfies the following assumption.

Assumption 12.2.2 [Policy Class].

Given Psub ⊆ Pmarkov, assume:

1. Psub is non-empty, compact, and convex

2. (Closure under policy improvement): For each π ∈ Psub, there exists π+ ∈ Psub s.t.

q
π
i (s,π

+
i (s),π−i(s)) = maxπ′

i∈F (π−i)
q
π
i (s,π

′
i(s),π−i(s)), for all i ∈ [n] and s ∈ S

Assumption 2, introduced as Condition 1 in Bhandari and Russo (2019), ensures that the

policy class under consideration (e.g., Psub ⊆ Pmarkov) is expressive enough to include best

responses. With the above assumptions in hand, we can prove the existence of a GMPE

using the Kakutani-Glicksberg fixed point theorem (Glicksberg, 1952) (Theorem 2.4.1,

Chapter 2)

Theorem 12.2.1.

Let M be a Markov pseudo-game for which Assumption 12.2.1 holds, and let Psub ⊆

Pmarkov be a subspace of Markov policy profiles that satisfies Assumption 12.2.2. Then,

there exists a policy π∗ ∈ Psub such that π∗ is an GMPE ofM.
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With solution concepts and their existence, we next turn our attention to computation.
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12.3 Merit Function Minimization for Generalized Markov Perfect Equilibrium

Our approach to computing a GMPE in a Markov pseudo-gameM is to minimize a merit

function associated with M, i.e., a function whose minima coincides with the pseudo-

game’s GMPE. Our choice of merit function, a common one in game theory, is exploitability

φ : P → R+, defined as φ(π)
.
=
∑

i∈[n]

[
maxπ′

i∈Fmarkov
i (π−i)

ui(π
′
i,π−i)− ui(π)

]
. In words,

exploitability is the sum of the players’ maximal unilateral payoff deviations.

Exploitability, however, is a merit function for GNE, not GMPE; state exploitability,

ϕ(s,π) =
∑

i∈[n][maxπ′
i∈Fmarkov

i (π−i)
v
(π′

i,π−i)
i (s) − v

π
i (s)] at all states s ∈ S, is a merit

function for GMPE. Nevertheless, as we show in the sequel, for a large class of Markov

pseudo-games, namely those with a bounded best-response mismatch coefficient (see Sec-

tion 12.3.3), the set of Markov policies that minimize exploitability equals the set of GMPE,

making our approach a sensible one.

We are not out of the woods yet, however, as exploitability is non-convex in general, even in

one-shot finite games (Nash, 1950a). Although Markov pseudo-games can afford a convex

exploitability (see, for instance (Flam and Ruszczynski, 1994)), it is unlikely that all do, as

GNE computation is PPAD-hard (Chen et al., 2009; Daskalakis et al., 2009). Accordingly,

we instead set our sights on computing a stationary point of the exploitability, i.e., a

policy profile π∗ ∈ Fmarkov(π∗) s.t. for any other policy π ∈ Fmarkov(π∗), it holds that

minh∈Dφ(π∗)⟨h,π∗ − π⟩ ≤ 0.3 Such a point satisfies the necessary conditions of a GMPE.

In this paper, we study Markov pseudo-games with possibly continuous state and action

spaces. As such, we can only hope to compute an approximate stationary point of the

exploitability in finite time. Defining a notion of approximate stationarity for exploitability

3While we provide a definition of a(n approximate) stationary point for expositional purposes at present, an
observant reader might have noticed the exploitability φ is a mapping from a function space to the positive
reals, and its Frêchet (sub)derivative is ill-specified without a clear definition of the normed vector space of
policies on which exploitability is defined. Further, even when clearly specified, such a (sub)derivative might
not exist. The precise meaning of a derivative of the exploitability and its stationary points will be introduced
more rigorously once we have suitably parameterized the policy spaces.
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is, however, a challenge, because exploitability is non-differentiable in general (once again,

even in one-shot finite games).

Given an approximation parameter ε ≥ 0, a natural definition of an ε-stationary point

might be a policy profile π∗ ∈ Fmarkov(π∗) s.t. for any other policy π ∈ Fmarkov(π∗), it

holds that minh∈Dφ(π∗)⟨h,π∗ − π⟩ ≤ ε. Exploitability is not necessarily Lipschitz-smooth,

however, so in general it may not be possible to compute an ε-stationary point in poly(1/ε)

evaluations of the (sub)gradient of the exploitability.4

To address, this challenge, a common approach in the optimization literature (see, for in-

stance Appendix H, Definition 19 of Liu et al. (2021)) is to consider an alternative definition

known as (ε, δ)-stationarity. Given approximation parameters ε, δ ≥ 0, an (ε, δ)-stationary

point of the exploitability is a policy profile π∗ ∈ Fmarkov(π∗) for which there exists a

δ-close policy π† ∈ P with ∥π† − π∗∥≤ δ s.t. for any other policy π ∈ Fmarkov(π†), it holds

that minh∈Dφ(π†)⟨h,π† − π⟩ ≤ ε. The exploitability minimization method we introduce

can compute such an approximate stationary point in polynomial time. Furthermore,

asymptotically, our method is guaranteed to converge to an exact stationary point of the

exploitability.

More precisely, following Goktas and Greenwald (2022b), who minimize exploitability to

solve for variational equilibria in (one-shot) pseudo-games, we first formulate our problem

as the quasi-optimization problem of minimizing exploitability,5 and then transform this

problem into a coupled min-max optimization (i.e., a two-player zero-sum game) whose

objective is cumulative regret, rather than the potentially ill-behaved exploitability. Under

suitable parametrization, such problems are amenable to polynomial-time solutions via si-

4To see this, consider the convex minimization problem minx∈R f(x) = |x|. The minimum of this optimiza-
tion occurs at x = 0, which is a stationary point since a (sub)derivative of f at x = 0 is 0. However, for x < 0,
we have ∂f(x)

∂x
= −1, and for x > 0, we have ∂f(x)

∂x
= 1. Hence, any x ∈ R \ {0} can at best be a 1-stationary

point, i.e.,
∣∣∣ ∂f(x)∂x

∣∣∣ = 1. Hence, for this optimization problem, it is not even possible to guarantee the existence
of an ε-stationary point distinct from x = 0, assuming ε ∈ (0, 1), let alone the computation of an ε-stationary

point x∗ s.t.
∣∣∣ ∂f(x∗)∂x

∣∣∣ ≤ ε.
5Here, “quasi” refers to the fact that a solution to this problem is both a minimizer of exploitability and a

fixed point of an operator, such as F or Fmarkov.
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multaneous gradient descent ascent (Arrow et al., 1958), assuming the objective is Lipschitz

smooth in both players’ decision variables and gradient dominated in the inner player’s.

We thus formulate the requisite assumptions to ensure these properties hold of cumulative

regret in our game, which in turn allows us to show that two time scale simultaneous

stochastic gradient descent ascent (TTSSGDA) converges to an (ε,O(ε))-stationary point

of the exploitability in poly(1/ε) gradient steps.

12.3.1 Exploitability Minimization

Given a Markov pseudo-gameM and two policy profiles π,π′ ∈ P , we define the state

cumulative regret at state s ∈ S as ψ(s,π,π′) =
∑

i∈[n]

[
v
(π′

i,π−i)
i (s)− vπi (s)

]
; the ex-

pected cumulative regret for any initial state distribution υ ∈ ∆(S) as ψ(υ,π,π′) =

Es∼υ [ψ(s,π,π
′)], and the cumulative regret as Ψ(π,π′) = ψ(µ,π,π′). Additionally,

we define the state exploitability of a policy profile π at state s ∈ S as ϕ(s,π) =∑
i∈[n]maxπ′

i∈Fmarkov
i (π−i)

v
(π′

i,π−i)
i (s)−vπi (s); , the expected exploitability of a policy profile

π for any initial state distribution υ ∈ ∆(S) as ϕ(υ,π) = Es∼υ [ϕ(s,π)], and exploitability

as φ(π) =
∑

i∈[n]maxπ′
i∈Fmarkov

i (π−i)
ui(π

′
i,π−i).

In the above, we restrict our attention to the subclass Pmarkov ⊆ P of (pure) Markov

policies. This restriction is without loss of generality, because finding an optimal policy that

maximizes a state-value or payoff function, while the other players’ policies remain fixed,

reduces to solving a Markov decision process (MDP), and an optimal (possibly history-

dependent) policy in an MDP is guaranteed to exist in the space of (pure) Markov policies

under very mild continuity and compactness assumptions (Puterman, 2014). Indeed, the

next lemma justifies this restriction.

Lemma 12.3.1.

Given a Markov pseudo-gameM for which Assumption 12.2.1 holds, a Markov policy

profile π∗ ∈ Fmarkov(π∗) is a GMPE if and only if ϕ(s,π∗) = 0, for all states s ∈ S. Similarly,

a policy profile π∗ ∈ F (π∗) is an GNE if and only if φ(π∗) = 0.
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This lemma tells us that we can reformulate the problem of computing a GMPE as the

quasi-minimization problem of minimizing state exploitability, i.e., minπ∈Fmarkov(π) ϕ(s,π),

at all states s ∈ S simultaneously. The same is true of computing a GNE and exploitability.

This straightforward reformulation of GMPE (resp. GNE) in terms of state exploitability

(resp. exploitability) does not immediately lend itself to computation, as exploitability

minimization is non-trivial, because exploitability is neither convex nor differentiable in

general. Following Goktas and Greenwald (2022b), we can reformulate these problems

yet again, this time as coupled quasi-min-max optimization problems (Wald, 1945). We

proceed to do so now; however, we restrict our attention to exploitability, and hence GNE,

knowing that we will later show that minimizing exploitability suffices to minimize state

exploitability, and thereby find GMPE.

Observation 12.3.1.

Given a Markov pseudo-gameM,

min
π∈F (π)

φ(π) = min
π∈F (π)

max
π′∈Fmarkov(π)

Ψ(π,π′) . (12.3)

While the above observation makes progress towards our goal of reformulating exploitabil-

ity minimization in a tractable manner, the problem remains challenging to solve for two

reasons: first, a fixed point computation is required to solve the outer player’s minimization

problem; second, the inner player’s policy space depends on the choice of outer policy. We

overcome these difficulties by choosing suitable policy parameterizations.

12.3.2 Policy Parameterization

In a coupled min-max optimization problem, any solution to the inner player’s maximiza-

tion problem is implicitly parameterized by the outer player’s decision. We restructure the

jointly feasible Markov policy class to represent this dependence explicitly.

Define the class of dependent policiesR .
= {ρ : S × A → A | ∀(s,a) ∈ S ×A, ρ(s,a) ∈

X (s,a)} =×i∈[n]{ρi : S ×Ai → A−i | ∀(s,a−i) ∈ S ×A−i, ρi(s,a−i) ∈ Xi(s,a−i)}. With

this definition in hand we arrive at an uncoupled quasi-min-max optimization problem:
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Lemma 12.3.2.

Given a Markov pseudo-gameM,

min
π∈F (π)

max
π′∈Fmarkov(π)

Ψ(π,π′) = min
π∈F (π)

max
ρ∈R

Ψ(π,ρ(·,π(·))) . (12.4)

It can be expensive to represent the aforementioned dependence in policies explicitly. This

situation can be naturally rectified, however, by a suitable policy parameterization. A

suitable policy parameterization can also allow us to represent the set of fixed points s.t.

π ∈ Fmarkov(π) more efficiently in practice (Goktas et al., 2023a).

Define a parameterization scheme (π,ρ,RΩ,RΣ) as comprising a unconstrained parameter

space RΩ and parametric policy profile function π : S × RΩ → A for the outer player,

and an unconstrained parameter space RΣ and parametric policy profile function ρ :

S × A × RΣ → A for the inner player. Given such a scheme, we restrict the players’

policies to be parameterized: i.e., the outer player’s space of policies PRΩ

= {π : S ×

RΩ → A | ω ∈ RΩ} ⊆ Pmarkov, while the inner player’s space of policies RRΣ

= {ρ :

S ×A × RΣ → A | σ ∈ RΣ}. Using these parametrization, we redefine vω .
= vπ(·;ω), qω .

=

qπ(·;ω), u(ω) = u(π(·;ω)), and ν
ω
µ = ν

π(·;ω)
µ ; vσ(ω) .

= vρ(·,π(·;ω);σ); qσ(ω) .
= qρ(·,π(·;ω);σ);

u(σ(ω)) = u(ρ(·,π(·;ω);σ)); νσ(ω)
µ = ν

ρ(·,π(·;ω);σ)
µ . With these definitions in place, we

make the following assumption on our parametrization.

Assumption 12.3.1 [Parametrization for Min-Max Optimization].

Given a Markov pseudo-gameM and a parameterization scheme (π,ρ,RΩ,RΣ), assume:

1. for all ω ∈ RΩ, π(s;ω) ∈ X (s,π(s;ω)), for all s ∈ S

2. for all σ ∈ RΣ, ρ(s,a;σ) ∈ X (s,a), for all (s,a) ∈ S ×A

Assuming a policy parameterization scheme that satisfies Assumption 12.3.1, we restate our

goal, state exploitability minimization, one last time as the following min-max optimization

problem:

min
ω∈RΩ

max
σ∈RΣ

Ψ(ω,σ)
.
= Ψ(π(·;ω),ρ(·,π(·;ω);σ)) . (12.5)
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Now, given unconstrained parameter space, we are able to simplify our definition of

approximate stationary point and obtain our target definition.

Definition 12.3.1.

Given ε, δ ≥ 0, a (ε, δ)-stationary point of the exploitability is a policy parameter ω∗ ∈

RΩ for which there exists a δ-close policy parameter ω† ∈ RΩ with ∥ω∗ − ω†∥≤ δ s.t.

minh∈Dφ(ω†)∥h∥≤ ε.

12.3.3 State Exploitability Minimization

Returning to our stated objective, namely state exploitability minimization, we turn our

attention to obtaining a tractable characterization of this goal. Specifically, we argue that it

suffices to minimize exploitability, rather than state exploitability, as any policy profile that

is a stationary point of exploitability is also a stationary point of state exploitability across

all states simultaneously, under suitable assumptions.

Our first lemma states that a stationary point of the exploitability is almost surely also

a stationary point of the state exploitability at all states. Moreover, if the initial state

distribution has full support, then any (ε, δ)-stationary point of the exploitability can be

converted into an (ε/α, δ)-stationary point of the state exploitability, with probability at least

1− α.

Lemma 12.3.3.

Given a Markov pseudo-gameM, for ω ∈ RΩ, suppose that ϕ(s, ·) is differentiable at ω for

all s ∈ S. If ∥∇ωφ(ω)∥= 0, then, for all states s ∈ S, ∥∇ωϕ(s,ω)∥= 0 µ-almost surely, i.e.,

µ({s ∈ S | ∥∇ωϕ(s,ω)∥= 0}) = 1. Moreover, for any ε > 0 and δ ∈ [0, 1], if supp(µ) = S

and ∥∇ωφ(ω)∥≤ ε, then with probability at least 1− δ, ∥∇ωϕ(s,ω)∥≤ ε/δ.

In fact, we can strengthen this probabilistic equivalence to a deterministic one by restricting

our attention to Markov pseudo-games with bounded best-response mismatch coefficients.

Our best-response mismatch coefficient generalizes the minimax mismatch coefficient in
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two-player settings (Daskalakis et al., 2020a) and the distribution mismatch coefficient in

single-agent settings (Agarwal et al., 2020).

Definition 12.3.2 [Best-Response Mismatch Coefficient].

GivenM with initial state distribution µ and alternative state distribution υ ∈ ∆(S), and

letting Φi(π−i)
.
= argmaxπ′

i∈Fmarkov
i (π−i)

ui(π
′
i,π−i) denote the set of best response policies

for player i when the other players play policy profile π−i, we define the best-response

mismatch coefficient for policy profile π as

Cbr(π, µ, υ)
.
= max

i∈[n]
max

π′
i∈Φi(π−i)

(
1

1− γ

)2
∥∥∥∥∥δ

(π′
i,π−i)

υ

µ

∥∥∥∥∥
∞

∥∥∥∥δπυµ
∥∥∥∥
∞

.

Lemma 12.3.4.

LetM be a Markov pseudo-game with initial state distribution µ. Given policy parameter

ω ∈ RΩ and arbitrary state distribution υ ∈ ∆(S), suppose that both ϕ(µ, ·) and ϕ(υ, ·) are

differentiable at ω , then we have: ∥∇ϕ(υ,ω)∥≤ Cbr(π(·;ω∗), µ, υ)∥∇φ(ω)∥.

Once again, Lemma 12.3.3 states that any approximate stationary point of exploitability

is also an approximate stationary point of state exploitability with high probability, while

Lemma 12.3.4 upper bounds state exploitability in terms of exploitability, when the best-

response mismatch coefficient is bounded. Together, these two lemmas imply that finding a

policy profile this is a stationary point of exploitability is sufficient for find a policy profile

this is a stationary point of state exploitability, and hence one that satisfies the necessary

conditions of a GMPE.

12.3.4 Algorithmic Assumptions

We are nearly ready to describe our reinforcement learning algorithm for computing a

stationary point of Equation (12.5), and thereby finding a policy profile that satisfies the

necessary conditions of a GMPE. As Equation (12.5) is a two-player zero-sum game, our

method is a variant of simultaneous gradient descent ascent (GDA) (Arrow et al., 1958),

meaning it adjusts its parameters based on first-order information until it reaches a (first-

order) stationary point. Polynomial-time convergence of GDA typically requires that the
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objective be Lipschitz smooth in both decision variables, and gradient dominated in the

inner one, which in our application, translates to the cumulative regret Ψ(ω,σ) being

Lipschitz smooth in (ω,σ) and gradient dominated in σ . These conditions are ensured,

under the following assumptions on the Markov pseudo-game.

Assumption 12.3.2 [Lipschitz Smooth Payoffs].

Given a Markov pseudo-gameM and a parameterization scheme (π,ρ,RΩ,RΣ), assume:

1. RΩ and RΣ are non-empty, compact, and convex

2. ω 7→ π(s;ω) is twice continuously differentiable, for all s ∈ S, and σ 7→ ρ(s,a;σ)

is twice continuously differentiable, for all (s,a) ∈ S ×A

3. a 7→ r(s,a) is twice continuously differentiable, for all s ∈ S

4. a 7→ ρ(s′ | s,a) is twice continuously differentiable, for all s, s′ ∈ S.

Assumption 12.3.3 [Gradient Dominance Conditions].

Given a Markov pseudo-gameM together with a parameterization scheme (π,ρ,RΩ,RΣ),

assume:

1. (Closure under policy improvement): For each ω ∈ RΩ, there exists σ ∈ RΣ s.t.

q
ω
i (s,ρi(s,π(s;ω);σ),π−i(s;ω)) = maxπ′

i∈Fi(π(·;ω)) q
ω
i (s,π

′
i(s),π−i(s;ω)) for all

i ∈ [n], s ∈ S.

2. (Concavity of cumulative regret) σ 7→ q
ω′

i (s,ρi(s,π−i(s;ω);σ),π−i(s;ω)) is con-

cave, for all s ∈ S and ω,ω′ ∈ RΩ.

12.3.5 Algorithm and Convergence

Finally, we present our algorithm for finding an approximate stationary point of exploitabil-

ity, and thus state exploitability. The algorithm we use is two time-scale stochastic simulta-

neous gradient descent-ascent (TTSSGDA), first analyzed by Lin et al. (2020); Daskalakis

et al. (2020a), for which we prove best-iterate convergence to an (ε,O(ε))-stationary point

of exploitability after taking poly(1/ε) gradient steps under Assumptions 12.3.2 and 12.3.3.
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Algorithm 11 Two time-scale simultaneous SGDA (TTSSGDA)

Inputs:M, (π,ρ,RΩ,RΣ), ηω , ησ ,ω
(0),σ(0), T

Outputs: (ω(t),σ(t))Tt=0

1: Build gradient estimator Ĝ associated withM

2: for t = 0, . . . , T − 1 do

3: h ∼ νω , h′ ∼×i∈[n] ν
(σi(ω−i),ω−i)

4: ω(t+1) ← ω(t) − ηω Ĝω (ω
(t),σ(t);h,h′)

5: σ(t+1) ← σ(t) + ησ Ĝσ (ω
(t),σ(t);h,h′)

6: return (ω(t),σ(t)Tt=0

Recall that Assumption 12.3.2 guarantees Lipschitz smoothness w.r.t. to both ω and σ , while

Assumption 12.3.3 guarantees gradient dominance w.r.t σ . As the gradient of cumulative

regret involves an expectation over histories, we assume that we can simulate trajectories

of play h ∼ νπµ according to the history distribution νπµ , for any policy profile π , and that

doing so provides both value and gradient information for the rewards and transition

probabilities along simulated trajectories. That is, we rely on a differentiable game simulator

(see, for instance Suh et al. (2022)), meaning a stochastic first-order oracle that returns the

gradients of the rewards r and transition probabilities ρ, which we query to estimate

deviation payoffs, and ultimately cumulative regrets.

Under this assumption, we estimate these values using realized trajectories from the

history distribution h ∼ ν
ω
µ induced by the outer player’s policy, and the deviation

history distribution hσ ∼×i∈[n] ν
(σi(ω−i),ω−i)
µ induced by the inner player’s policy. More

specifically, for all policies π ∈ Pmarkov and histories h ∈ Hτ , the payoff estimator for

player i ∈ [n] is given by:

ûi(π;h)
.
=

τ−1∑
t=0

µ(s(0))ri(s
(t),π′(s(t)))

t−1∏
k=0

γkρ(s(k+1) | s(k), (s(k))) .
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Furthermore, for all ω ∈ RΩ, σ ∈ RΣ, h ∼ ν
ω
µ , and hσ = (h

σ
1 , · · · ,h

σ
n ) ∼

×i∈[n] ν
(σi(ω−i),ωi)
µ , the cumulative regret estimator is given by Ψ̂(ω,σ;h,h′)

.
=∑

i∈[n] ûi(ρi( · ,π−i(·;ω);σ),π−i( · ,ω);h
σ
i ) − ûi(π(·;ω);h), while the cumulative regret

gradient estimator is given by Ĝ(ω,σ;h,hσ )
.
= (∇ω Ψ̂(ω,σ;h,h′),∇σ Ψ̂(ω,σ;h,hσ )).

Our main theorem requires one final definition, namely the equilibrium distribution

mismatch coefficient
∥∥∥∥∂δπ∗

µ

∂µ

∥∥∥∥
∞

, defined as the Radon-Nikodym derivative of the state-

visitation distribution of the GNE π∗ w.r.t. the initial state distribution µ. This coefficient,

which measures the inherent difficulty of visiting states under the equilibrium policy π∗—

without knowing π∗—is closely related to other distribution mismatch coefficients used in

the analysis of policy gradient methods (Agarwal et al., 2020).

We now state our main theorem, namely that, under the assumptions outlined above,

Algorithm 11 computes values for the policy parameters that nearly satisfy the necessary

conditions for an MGPNE in polynomially many gradient steps, or equivalently, calls to

the differentiable simulator.

Theorem 12.3.1.

Given a Markov pseudo-gameM, and a parameterization scheme (π,ρ,RΩ,RΣ), suppose

Assumption 12.2.1, 12.3.2, and 12.3.3 hold. For any δ > 0, set ε = δ∥Cbr(·, µ, ·)∥−1
∞ . If

Algorithm 11 is run with inputs that satisfy, ηω , ησ ≍ poly(ε, ∥∂δπ
∗

µ /∂µ∥∞, 1
1−γ , ℓ

−1
∇Ψ, ℓ

−1
Ψ ),

then for some T ∈ poly
(
ε−1, (1− γ)−1, ∥∂δπ

∗
µ /∂µ∥∞, ℓ∇Ψ, ℓΨ, diam(RΩ × RΣ), η−1

ω

)
, there

exists ω
(T)
best = ω(k) with k ≤ T that is a (ε, ε/2ℓΨ)-stationary point of the exploitability, i.e.,

there exists ω∗ ∈ RΩ s.t. ∥ω(T )
best − ω∗∥≤ ε/2ℓΨ and minh∈Dφ(ω∗)∥h∥≤ ε.

Further, for any arbitrary state distribution υ ∈ ∆(S), if ϕ(υ, ·) is differentiable at ω∗,

∥∇ωφ(υ,ω
∗)∥≤ δ, i.e., ω(T)

best is a (ε, δ)-stationary point for the expected exploitability ϕ(υ, ·).
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Chapter 13

Radner Economies

13.1 Background

Having developed a mathematical formalism for Markov pseudo-games, along with a

proof of existence of GMPE as well as an algorithm that computes them, we now move on to

our main agenda, namely modeling incomplete stochastic economies in this formalism. We

establish the first proof, to our knowledge, of the existence of recursive Radner equilibria in

Radner economies, and we provide a polynomial-time algorithm for approximating them.

13.1.1 Static Exchange Economies

A static exchange economy (or market1) (n,m, d,X , E, T ,u,E ,Θ), abbreviated by (E ,Θ)

when clear from context, comprises a finite set of n ∈ N+ consumers and m ∈ N+ com-

modities. Each consumer i ∈ [n] arrives at the market with an endowment of commodities

represented as vector ei = (ei1, . . . , eim) ∈ Ei, where Ei ⊂ Rm is called the endowment

space.2 Any consumer i can sell its endowment ei ∈ Ei at prices p ∈ P , where pj ≥ 0

represents the value (resp. cost) of selling (resp. buying) a unit of commodity j ∈ [m], to

1Although a static exchange “market” is an economy, we prefer the term “market” for the static components
of a Radner economy, a dynamic exchange economy in which each time-period comprises one static market
among many.

2Commodities are assumed to include labor services. Further, for any consumer i and endowment ei ∈ Ei,
eij ≥ 0 denotes the quantity of commodity j in consumer i’s possession, while eij < 0 denotes consumer i’s
debt, in terms of commodity j.
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purchase a consumption xi ∈ Xi of commodities in its consumption space Xi ⊆ Rm.3

Every consumer is constrained to buy a consumption with a cost weakly less than the

value of its endowment, i.e., consumer i’s budget set—the set of consumptions i can afford

with its endowment ei ∈ Ei at prices p ∈ P—is determined by its budget correspondence

Bi(ei,p)
.
= {xi ∈ Xi | xi · p ≤ ei · p}.

Each consumer’s consumption preferences are determined by its type-dependent preference

relation ⪰i,θi
on Xi, represented by a type-dependent utility function xi 7→ ui(xi;θi), for

type θi ∈ Ti that characterizes consumer i’s preferences within the type space Ti ⊂ Rd

of possible preferences.4 The goal of each consumer i is thus to buy a consumption

xi ∈ Bi(ei,p) that maximizes its utility function xi 7→ ui(xi;θi) over its budget set Bi(ei,p).

We denote any endowment profile (resp. type profile and consumption profile) as E .
=

(e1, . . . , en)
T ∈ E (resp. Θ .

= (θ1, . . . ,θn) ∈ T and X
.
= (x1, . . . ,xn)

T ∈ X ). The aggregate

demand (resp. aggregate supply) of a consumption profile X ∈ X (resp. an endowment

profile E ∈ E) is defined as the sum of consumptions (resp. endowments) across all

consumers, i.e.,
∑

i∈[n] xi (resp.
∑

i∈[n] ei).

13.1.2 Radner Economies

A(n infinite horizon) Radner economy (Radner, 1972) I .
=

(n,m, l, d,S,X , E, T ,u, γ, ρ,R, µ), comprises n ∈ N consumers who, over an infinite

discrete time horizon t = 0, 1, 2, . . ., repeatedly encounter the opportunity to buy a

consumption of m ∈ N commodities and a portfolio of l ∈ N assets, with their collective

decisions leading them through a state space S .
= O × (E × T ). This state space comprises

3We note that, for any labor service j, consumer i’s consumption xij is negative and restricted by its
consumption space to be lower bounded by the negative of i’s endowment, i.e., xij ∈ [−eij , 0]. This modeling
choice allows us to model a consumer’s preferences over the labor services she can provide. More generally,
the consumption space models the constraints imposed on consumption by the “physical properties” of the
world. That is, it rules out impossible combinations of commodities, such as strictly positive quantities of a
commodity that is not available in the region where a consumer resides, or a supply of labor that amounts to
more than 24 labor hours in a given day.

4In the sequel, we will be assuming, for any consumer i with any type θi ∈ Ti, the type-dependent utility
function xi 7→ ui(xi;θi) is continuous, which implies that it can represent any type-dependent preference
relation ⪰i,θi

on Rm that is complete, transitive, and continuous (Debreu et al., 1954).

320



a world state space O and a spot market space E × T . The spot market space is a collection

of spot markets, each one a static exchange market (E ,Θ) ∈ E × T ⊆ Rm × Rd.

Each asset k ∈ [l] is a generalized Arrow security, i.e., a divisible contract that transfers

to its owner a quantity of the jth commodity at any world state o ∈ O determined by a

matrix of asset returns Ro
.
=
(
ro1, . . . , rol

)T ∈ Rl×m s.t. rokj ∈ R denotes the quantity of

commodity j transferred at world state o for one unit of asset k. The collection of asset

returns across all world states is given byR .
= {Ro}o∈O . At any time step t = 0, 1, 2, . . ., a

consumer i ∈ [n] can invest in an asset portfolio yi ∈ Yi from a space of asset portfolios (or

investments) Yi ⊂ Rl that define the asset market, where yik ≥ 0 denotes the units of asset

k bought (long) by consumer i, while yik < 0 denotes units that are sold (short). Assets are

assumed to be short-lived (Magill and Quinzii, 1994), meaning that any asset purchased at

time t pays its dividends in the subsequent time period t + 1, and then expires.5 Assets

allow consumers to insure themselves against future realizations of the spot market (i.e.,

types and endowments), by allowing it to transfer wealth across world states.

The economy starts at time period t = 0 in an initial state S(0) ∼ µ determined by an initial

state distribution µ ∈ ∆(S). At each time step t = 0, 1, 2, . . ., the state of the economy is

s(t)
.
= (o(t),E(t),Θ(t)) ∈ S. Each consumer i ∈ [n], observes the world state o(t) ∈ O, and

participates in a spot market (E(t),Θ(t)), where it purchases a consumption x
(t)
i ∈ Xi at

commodity prices p(t) ∈ ∆m, and an asset market where it invests in an asset portfolio

y
(t)
i ∈ Yi at assets prices q(t) ∈ Rl.6 Every consumer is constrained to buy a consumption

x
(t)
i ∈ Xi and invest in an asset portfolio y

(t)
i ∈ Yi with a total cost weakly less than

the value of its current endowment e
(t)
i ∈ Ei. Formally, the set of consumptions and

5While for ease of exposition we assume that assets are short-lived, our results generalize to infinitely-lived
generalized Arrow securities (Huang and Werner, 2004) (i.e., securities that never expire, so yield returns and
can be resold in every subsequent time period following their purchase) with appropriate modifications to the
definitions of the budget constraints and Walras’ law. In contrast, our results do not immediately generalize
to k-period-living generalized Arrow securities (i.e., securities that yield returns and can be resold in the k
subsequent time periods following their purchase, until their expiration), as such securities introduce non-
stationarities into the economy. To accommodate such securities would require that we generalize our Markov
game model and methods to accommodate policies that depend on histories of length k.

6In general, asset prices can be negative. This modeling assumption is in line with the real world: e.g., it is
common for energy futures to see negative prices because of costs associated with overproduction and limited
storage capacity (Sheppard et al., 2020).
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investment portfolios that a consumer i can afford with its current endowment e(t)i ∈ Ei

at current commodity prices p(t) ∈ P and current asset prices q(t) ∈ Rl, i.e., its budget set

Bi(e(t)i ,p(t), q(t)), is determined by its budget correspondence

Bi(ei,p, q)
.
= {(xi,yi) ∈ Xi × Yi | xi · p + yi · q ≤ ei · p}.

After the consumers make their consumption and investment decisions, they each receive

reward ui(x
(t)
i ;θ

(t)
i ) as a function of their consumption and type, and then the economy

either collapses with probability 1− γ, or survives with probability γ, where γ ∈ (0, 1) is

called the discount rate.7 If the economy survives to see another day, then a new state

is realized, namely (O′, E′,Θ′) ∼ ρ(· | s(t),Y (t)), according to a transition probability

function ρ : S × S × Y → [0, 1] that depends on the consumers’ investment portfolio

profile Y (t) .
= (y

(t)
1 , . . . ,y

(t)
n )T ∈ Y, after which the economy transitions to a new state

S(t+1) .= (O′, E′ + Y (t)RO′ ,Θ′), where the consumers’ new endowments depends on their

returns Y (t)RO′ ∈ Rn×m on their investments.

Remark 13.1.1.

If only one commodity is delivered in exchange for assets, i.e., for all world states o ∈ O,

Rank(Ro) ≤ 1, then the generalized Arrow securities are numéraire generalized Arrow

securities, and the assets are called financial assets.8 A Radner economy is world-state-

contingent iff the cardinality of the world state space is weakly greater than that of the

spot market space, i.e., |O|≥ |E × T |. Intuitively, when this condition holds, there exists a

surjection from world states to spot market states, which implies that spot market states are

implicit in world states, so that the spot market states can be dropped from the state space,

i.e., S .
= O. A Radner economy has complete asset markets if it is world-state-contingent,

7While for ease of exposition we assume a single discount factor for all consumers, our results extend to a
setting in which each consumer i ∈ [n] has a potentially unique discount factor γi ∈ (0, 1) by incorporating the
discount rates into the consumers’ payoffs in the Markov pseudo-game defined in Section 14.1.2, rather than
the history distribution.

8Recall that the numéraire is a fixed commodity that is used to standardize the value of other commodities,
while a numéraire generalized Arrow security is a generalized Arrow security that delivers its returns in terms
of the numérarire. If the assets deliver exactly one commodity, i.e., Rank(Ro) = 1 at all world states o, we
take that commodity to be the numéraire for the corresponding spot markets. On the other hand, if the assets
deliver no commodity, i.e., Rank(Ro) = 0 at world state o, then we can take any arbitrary commodity to be the
numéraire, in which case, the assets vacuously “deliver” zero units of the numérarire, and no units of any other
commodities either.
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and assets can deliver some commodity at all world states, i.e., for all world states o ∈ O,

Rank(Ro) ≥ 1. Otherwise, it has incomplete asset markets. Colloquially, we call an infinite

horizon exchange economy with (in)complete asset markets an (in)complete exchange

economy. Intuitively, in complete exchange economies, consumers can insure themselves

against all future realizations of the spot market—uncertainty regarding their endowments

and types—since a complete exchange economy is world-state contingent. Further, when

there is only a single commodity, s.t. m = 1, and only one financial asset which is a risk-free

bond s.t. l = 1, and the return matrix for all world states o ∈ O (now a scalar since there is

only one commodity and one financial asset) is given by ro
.
= α, for some α ∈ R, we obtain

the standard incomplete market model (Blackwell, 1965; Lucas Jr and Prescott, 1971).

A history h ∈ Hτ .
= (S × X × Y × P × Rl)τ × S is a sequence h =

((s(t),X(t),Y (t),p(t), q(t))τ−1
t=0 , s

(τ)) of tuples comprising states, consumption profiles, in-

vestment profiles, commodity price, and asset prices s.t. a history of length 0 corresponds

only to the initial state of the economy. For any history h ∈ Hτ , we denote by h:p the first

p ∈ [0 : τ] steps of h, i.e., h:p
.
= ((s(t),X(t),Y (t),p(t), q(t))p−1

t=0 , s
(p)). Overloading notation,

we define the history spaceH .
=
⋃∞
τ=0Hτ , and then consumption, investment, commodity

price and asset price policies as mappings xi : H → Xi, yi : H → Yi, p : H → ∆m, and

q : H → Rl from histories to consumptions, investments, commodity prices, and asset

prices, respectively, s.t. (xi,yi)(h) is the consumption-investment decision of consumer

i ∈ [n], and (p, q)(h) are commodity and asset prices, both at history h ∈ H. A con-

sumption policy profile (resp. investment policy profile) X (h)
.
= (x1, . . . ,xn)(h)

T (resp.

Y (h)
.
= (y1, . . . ,yn)(h)

T ) is a collection of consumption (resp. investment) policies for all

consumers. A consumption policy xi : S → Xi is Markov if it depends only on the last

state of the history, i.e., xi(h) = xi(s
(τ)), for all histories h ∈ Hτ of all lengths τ ∈ N. An

analogous definition extends to investment, commodity price, and asset price policies.
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Given π
.
= (X ,Y ,p, q) and a history h ∈ Hτ , we define the discounted history distribu-

tion assuming initial state distribution µ as

νπ ,τµ (h) = µ(s(0))

τ−1∏
t=0

γtρ(o(t+1),E(t+1) + Y (t)Ro(t+1) ,Θ(t+1) | s(t),Y (t))1{Y (h:t )}(Y
(t)).

Overloading notation, we define the set of all realizable trajectoriesHπ of length τ under

policy profile π as Hπ .
= supp(ν

π ,τ
µ ), i.e., the set of all histories that occur with non-zero

probability, and we let H =
(
(S(t), A(t))τ−1

t=0 , S
(τ)
)

be any randomly sampled history from

ν
π ,τ
µ . Finally, we abbreviate νπµ

.
= ν

π ,∞
µ .

13.1.3 Solution Concepts and Existence

An outcome (X ,Y ,p, q) : H → X ×Y×∆m×Rl of a Radner economy is a tuple consisting

of a commodity prices policy, an asset prices policy, a consumption policy profile, and an

investment policy profile.9

An outcome is Markov if all its constituent policies are Markov: i.e., if it depends only

on the last state of the history, i.e., (X ,Y ,p, q)(h) = (X ,Y ,p, q)(s(τ)), for all histories

h ∈ Hτ of all lengths τ ∈ N.

We now introduce a number of properties of Radner economies outcomes, which we use to

define our solution concepts. While these properties are defined broadly for (in general,

history-dependent) outcomes, they also apply in the special case of Markov outcomes.

Given a consumption and investment profile (X ,Y ), the consumption state-value func-

tion v(X ,Y ,p,q)
i : S → R is defined as:

v
(X ,Y ,p,q)
i (s)

.
= E

H∼ν(X ,Y ,p,q)
µ

[ ∞∑
t=0

γtui

(
xi(H:t); Θ

(t)
)
| S(0) = s

]
.

Definition 13.1.1 [Optimal Outcome].

An outcome (X∗,Y ∗,p∗, q∗) is optimal for i if i’s expected cumulative utility

ui(X ,Y ,p, q)
.
= Es∼µ

[
v
(X ,Y ,p,q)
i (s)

]
is maximized over all affordable consumption and

9Instead of expressing this tuple as XH × YH × ∆m
H × RlH , we sometimes write (X ,Y ,p, q) : H →

X × Y ×∆m × Rl.
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investment policies, i.e.,

(x∗
i ,y

∗
i ) ∈ argmax

(xi,yi):H→Xi×Yi,∀t∈N,h∈Ht

(xi,yi)(h:t )∈Bi(e
(t)
i ,p∗(h:t ),q

∗(h:t ))

ui(xi,x
∗
−i,yi,y

∗
−i,p

∗, q∗) . (13.1)

A Markov outcome (X∗,Y ∗,p∗, q∗) is Markov perfect for i if i maximizes its consumption

state-value function over all affordable consumption and investment policies, i.e.,

(x∗
i ,y

∗
i ) ∈ argmax

(xi,yi):S→Xi×Yi:∀s∈S,
(xi,yi)(s)∈Bi(ei,p

∗(s),q∗(s))

{
v
(xi,x

∗
−i,yi,y

∗
−i,p

∗,q∗)
i (s)

}
. (13.2)

Definition 13.1.2 [Feasible Outcomes].

A consumption policy X is said to be feasible iff for all time horizons τ ∈ N and histories

h ∈ Hτ of length τ, ∑
i∈[n]

xi(h)−
∑
i∈[n]

e
(τ)
i ≤ 0m,

where e
(τ)
i ∈ Ei is consumer i’s endowment at the end of history h, i.e., at state s(τ).

Similarly, an investment policy is feasible iff for all time horizons τ ∈ N and histories

h ∈ Hτ of length τ, ∑
i∈[n]

yi(h) ≤ 0l.

If all the consumption and investment policies associated with an outcome are feasible, we

will colloquially refer to the outcome as feasible as well.

Definition 13.1.3 [Walras’ Law].

An outcome (X ,Y ,p, q) is said to satisfy Walras’ law iff for all time horizons τ ∈ N and

histories h ∈ Hτ of length τ,

p(h) ·

∑
i∈[n]

xi(h)−
∑
i∈[n]

e
(τ)
i

+ q(h) ·

∑
i∈[n]

yi(h)

 = 0,

where, as above, e(τ)i ∈ Ei is consumer i’s endowment at state s(τ).

The canonical solution concept for stochastic economies is the Radner equilibrium.
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Definition 13.1.4 [Radner Equilibrium].

A Radner (or sequential competitive) equilibrium (RE) (Radner, 1972) of a Radner econ-

omy I is an outcome (X∗,Y ∗,p∗, q∗) that is 1. optimal for all consumers, i.e., Equation (13.1)

is satisfied, for all consumers i ∈ [n]; 2. feasible; and 3. satisfies Walras’ law.

As a Radner equilibrium is in general infinite dimensional, we are often interested in a

recursive Radner equilibrium which is a Markov outcome, i.e., one that depends only on

the last state of the history rather than the entire history, and as such better behaved.

Definition 13.1.5 [Recursive Radner Equilibrium].

A recursive Radner (or Walrasian or competitive) equilibrium (RRE) (Mehra and

Prescott, 1977; Prescott and Mehra, 1980) of a Radner economy I is a Markov outcome

(X∗,Y ∗,p∗, q∗) that is 1. Markov perfect for all consumers, i.e., Equation (13.2) is satisfied,

for all consumers i ∈ [n]; 2. feasible; and 3. satisfies Walras’ law.

The following assumptions are standard in the equilibrium literature (see, for instance,

Geanakoplos (1990)). We prove the existence of a recursive Radner equilibrium under these

assumptions.

Assumption 13.1.1.

Given a Radner economy I, assume for all i ∈ [n],

1. X , Y, E, are non-empty, closed, convex, with E additionally bounded;

2. (θi,xi) 7→ ui(xi;θi) is continuous and concave, and (s,yi) 7→ ρ(s′ | s,yi,y−i) is

continuous and stochastically concave, for all s′ ∈ S and y−i ∈ Y−i;

3. for all ei ∈ Ei, the correspondence

(p, q) 7!7! Bi(ei,p, q) ∩ {(xi,yi) |
∑
i∈[n]

xi ≤
∑
i∈[n]

ei,
∑
i∈[n]

yi ≤ 0m, (X ,Y ) ∈ X × Y}

is continuous10;

10One way to ensure that this condition holds is to assume that for all s = (o,E ,Θ) ∈ S, returns from assets
are positive Ro ≥ 0ml, and for all consumers i ∈ [n], there exists (xi,yi) ∈ Xi × Yi, s.t. xi < ei, yi < 0.
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4. Bi(ei,p, q) ∩ {(xi,yi) |
∑

i∈[n] xi ≤
∑

i∈[n] ei,
∑

i∈[n] yi ≤ 0m, (X ,Y ) ∈ X × Y} is

non-empty, convex, and compact, for all ei ∈ Ei, p ∈ ∆m, and q ∈ Rl11;

5. (no saturation) there exists an x+
i ∈ Xi s.t. ui(x

+
i ;θi) > ui(xi;θi), for all xi ∈ Xi and

θi ∈ Ti.

Next we associate an Radner Markov pseudo-gameM with a given Radner economy I.

Definition 13.1.6 [Radner Markov pseudo-game].

Let I be a Radner economy. The corresponding Radner Markov pseudo-game M =

(n+ 1,m+ l,S,×i∈[n](Xi × Yi)× (P ×Q),B′, r′, ρ′, γ′, µ′) is defined as

• The n+ 1 players comprise n consumers, players 1, . . . , n, and one auctioneer, player

n+ 1.

• The set of states S = O × E × T . At each state s = (o,E ,Θ) ∈ S,

– each consumer i ∈ [n] chooses an action ai = (xi,yi) ∈ B′i
(
s,a−i

)
⊆ Xi × Yi

from a set of feasible actions B′i(s,a−i) = Bi(ei,an+1) ∩ {(xi,yi) |
∑

i∈[n] xi ≤∑
i∈[n] ei,

∑
i∈[n] yi ≤ 0m, (X ,Y ) ∈ X × Y} and receives reward r′i(s,a)

.
=

ui(xi;θi); and

– the auctioneer n + 1 chooses an action an+1 = (p, q) ∈ B′n+1

(
s,a−(n+1)

)
.
=

P×Qwhere P .
= ∆m andQ ⊆ [0,maxE∈E

∑
i∈[n]

∑
j∈[m] eij ]

l, and and receives

reward r′n+1(s,a)
.
= p ·

(∑
i∈[n] xi −

∑
i∈[n] ei

)
+ q ·

(∑
i∈[n] yi

)
.

• The transition probability function is defined as ρ′(s′ | s,a) .= ρ(s′ | s,Y ).

• The discount rate γ′ = γ and the initial state distribution µ′ = µ.

Our existence proof reformulates the set of recursive Radner equilibria of any Radner

economy as the set of GMPE of the Radner Markov pseudo-game.

Theorem 13.1.1.

Consider a Radner economy I. Under Assumption 13.1.1, the set of recursive Radner
11One way to ensure that this condition holds is to assume that for all s = (o,E ,Θ) ∈ S, returns from assets

are positive, i.e., Ro ≥ 0ml, and X ,Y are bounded from below.
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equilibria of I is equal to the set of GMPE of the associated Radner Markov pseudo-game

M.

Corollary 13.1.1.

Under Assumption 13.1.1, the set of recursive Radner equilibria of a Radner economy is

non-empty.

13.1.4 Equilibrium Computation

Since a recursive Radner equilibrium is infinite-dimensional when the state space is con-

tinuous, its computation is FNP-hard (Murty and Kabadi, 1987). As such, it is generally

believed that the best we can hope to find in polynomial time is an outcome that satisfies

the necessary conditions of a stationary point of a recursive Radner equilibrium. Since the

set of recursive Radner equilibria of any Radner economy is equal to the set of GMPE of

the associated Radner Markov pseudo-game (Theorem 13.1.1), running Algorithm 11 on

this Radner Markov pseudo-game will allow us to compute a policy profile that satisfies

the necessary conditions of a stationary point of an GMPE, and hence a recursive Radner

equilibrium.

Combining Theorem 13.1.1 and Theorem 12.3.1, we thus obtain the following computational

complexity guarantees for Algorithm 11, when run on the Radner Markov pseudo-game

associated with a Radner economy.12

Theorem 13.1.2.

Consider a Radner economy I and the associated Radner Markov pseudo-gamesM. Let

(π,ρ,RΩ,RΣ) be a parametrization scheme forM and suppose Assumptions 12.3.2, 12.3.3,

and 13.1.1 hold. Then, the convergence results in Theorem 12.3.1 hold forM.

12While for generality and ease of exposition we state Assumptions 12.3.2 and 12.3.3 for the Radner Markov
pseudo-game M, we note that when the Radner economy I satisfies Assumption 13.1.1, to ensure that the
associated Radner Markov pseudo-game M satisfies Assumption 12.3.2 and 12.3.3, it suffices to assume that
the parametric policy functions (π ,ρ) are affine; the policy parameter spaces (RΩ,RΣ) are non-empty, compact,
and convex; for all players i ∈ [n] and types θi ∈ Ti, the utility function xi 7→ ui(xi;θi) is twice continuously
differentiable; and for all s, s′ ∈ S, the transition function Y 7→ ρ(s′ | s,Y ) is twice continuously differentiable.
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13.2 Experiments

Given a Radner economy I, we associate with it an exchange economy Markov pseudo-

gameM, and we then construct a neural network to solveM. To do so, we assume a

parametrization scheme (π,ρ,RΩ,RΣ), where the parametric policy profiles (π,ρ) are

represented by neural networks with (RΩ,RΣ) as the corresponding network weights.

Computing an RRE via Algorithm 11 can then be seen as the result of training a generative

adversarial neural network (Goodfellow et al., 2014), where π (resp. ρ) is the output of the

generator (resp. adversarial) network. We call such a neural representation a generative

adversarial policy network (GAPNet).

Following this approach, we built GAPNets to approximate the RRE in two types of Radner

economies: one with a deterministic transition probability function and another with a

stochastic transition probability function. Within each type, we experimented with three

randomly sampled economies, each with 10 consumers, 10 commodities, 1 asset, 5 world

states, and characterized by a distinct class of reward functions, which impart different

smoothness properties onto the state-value function: linear: ui(xi;θi) =
∑

j∈[m] θijxij ;

Cobb-Douglas: ui(xi;θi) =
∏
j∈[m] xij

θij ; and Leontief: ui(xi;θi) = minj∈[m]

{
xij

θij

}
.13

We compare our results with a classic neural projection method (also known as deep

equilibrium nets (Azinovic et al., 2022)), which macroeconomists and others use to solve

stochastic economies. In this latter method, one seeks a policy profile that minimizes the

norm of the system of first-order necessary and sufficient conditions that characterize RRE

(see for instance, (Fernández-Villaverde, 2023)).14 We use the same network architecture

for both methods, and select hyperparameters through grid search. In all experiments,

we evaluate the performance of the computed policy profiles using three metrics: total

first-order violations, average Bellman errors,15 and exploitability. For each metric, we

13Full details of our experimental setup appear in Section 14.2, including hyperparameter search values,
final experimental configurations, and visualization code. See also our code repository: https://github.com/
Sadie-Zhao/Markov-Pseudo-Game-EC2025.

14We describe the neural projection method in Section 14.2.1.
15The definitions of these two metrics can be found in Section 14.2.1.
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Figure 13.1: Normalized Metrics for Economies with Deterministic Transition Probability Function

randomly sample 50 policy profiles, record their corresponding values, and normalize the

results by dividing it by the average.

Figure 13.1 depicts our results for economies with deterministic transition functions. Per-

haps unsurprisingly, while GAPNets demonstrates a clear advantage in minimizing ex-

ploitability in all three economies, the neural projection method (NPM) slightly outperforms

GAPNets in minimizing total first order violations and average Bellman error, the metrics

they are specifically designed to minimize. Furthermore, in all three economies, exploitabil-

ity is near 0, highlighting GAPNet’s ability to approximate at least a Radner equilibrium.

Figure 13.2 presents our results for economies with stochastic transition functions. These

results indicate that stochasticity hinders NPM’s ability to minimize the three metrics, even
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Figure 13.2: Normalized Metrics for Radner Economies with Stochastic Transition Probability Function

the method is explictly designed to minimize two of them. In contrast, GAPNet successfully

minimizes all three metrics across all economies.

331



Chapter 14

Appendix for Part III

14.1 Omitted Results and Proofs

14.1.1 Omitted Results and Proofs from Chapter 12

Theorem 12.2.1.

Let M be a Markov pseudo-game for which Assumption 12.2.1 holds, and let Psub ⊆

Pmarkov be a subspace of Markov policy profiles that satisfies Assumption 12.2.2. Then,

there exists a policy π∗ ∈ Psub such that π∗ is an GMPE ofM.

Proof

First, by Part 3 of Assumption 12.2.1, we know that for any i ∈ [n], F sub
i (π−i) is non-

empty, convex, and compact, for all π−i ∈ P−i. Moreover, 2 of Assumption 12.2.1,

F sub is upper-hemicontinuous. Therefore, by the Kakutani-Glicksberg fixed-point

theorem (see, Theorem 2.4.1—(Glicksberg, 1952)), the set F sub .
= {π ∈ Psub | π ∈

F sub(π)} is non-empty.

For any player i ∈ [n] and state s ∈ S, we define the individual state best-response

correspondence Φ
s
i : Psub ⇒ Ai by

Φ
s
i (π)

.
= argmax

ai∈Xi(s,π−i(s))
ri(s,ai,π−i(s)) + E

S′∼ρ(·|s,ai,π−i(s))
[γv

π
i (S

′)] (14.1)

= argmax
ai∈Xi(s,π−i(s))

q
π
i (s,ai,π−i(s)) (14.2)
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Then, for any player i ∈ [n], we define the restricted individual best-response

correspondence Φi : Psub ⇒ Psub
i as the Cartesian product of individual state

best-response correspondences across the states restricted to Psub:

Φi(π) =

(
×
s∈S

Φ
s
i (π)

)⋂
Psub
i (14.3)

= {πi ∈ Psub
i | πi(s) ∈ Φ

s
i (π), ∀ s ∈ S} (14.4)

Finally, we can define the multi-player best-response correspondence Φ : Psub ⇒

Psub as the Cartesian product of the individual correspondences, i.e., Φ(π)
.
=

×i∈[n]Φi(π).

To show the existence of

MPGNE, we first want to show that there exists a fixed point π∗ ∈ Psub such that

π∗ ∈ Φ(π∗). To this end, we need to show that 1. for any π ∈ Psub, Φ(π) is non-

empty, compact, and convex; 2. Φ is upper hemicontinuous.

Take any π ∈ Psub. Fix i ∈ [n], s ∈ S, we know that ai 7→ q
π
i (s,ai,π−i(s)) is

concave over Xi(s,π−i(s)), and Xi(s,π−i(s)) is non-empty, convex, and compact by

Assumption 12.2.1, then by Proposition 4.1 of Fiacco and Kyparisis (1986), Φs
i (π) is

non-empty, compact, and convex.

Now, notice×s∈S Φ
s
i (π) is compact and convex as it is a Cartesian product of com-

pact, convex sets. Thus, as Psub is also compact and convex by Assumption 12.2.2,

we know that Φi(π) =
(
×s∈S Φ

s
i (π)

)⋂
Psub
i is compact and convex. By the assump-

tion of closure under policy improvement under Assumption 12.2.2, we know that since

π ∈ Psub, there exists π+ ∈ Psub such that

π+
i ∈ argmax

π′
i∈Fmarkov

i (π−i)

q
π
i (s,π

′
i(s),π−i(s))

for all s ∈ S, and that means π+
i (s) ∈ Φ

s
i (π) for all s ∈ S. Thus, Φi(π) is also

non-empty. Since Cartesian product preserves non-emptiness, compactness, and

convexity, we can conclude that Φ(π) =×i∈[n]Φi(π) is non-empty, compact, and

convex.
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Similarly, fix i ∈ [n], s ∈ S, for any π ∈ Psub, since Xi(s, ·) is continuous (i.e. both up-

per and lower hemicontinuous), by the Maximum theorem, Φs
i is upper hemicontinu-

ous. π 7→×s∈S Φ
s
i (π) is upper hemicontinuous as it is a Cartesian product of upper

hemicontinuous correspondence, and consequently, π 7→
(
×s∈S Φ

s
i (π)

)⋂
Psub is

also upper hemicontinuous. Therefore, Φ is also upper hemicontinuous.

Since Φ(π) is non-empty, compact, and convex for any π ∈ Psub and Φ is upper hemi-

continuous, by the Kakutani-Glicksberg fixed-point theorem (see, Theorem 2.4.1—

(Glicksberg, 1952)), Φ admits a fixed point.

Finally, say π∗ ∈ Psub is a fixed point of Φ, and we want to show that π∗

is a generalized Markov perfect equilibrium (MPGNE) of M. Since π∗ ∈

Φ(π∗) = ×i∈[n]Φi(π
∗), we know that for all i ∈ [n], π∗

i (s) ∈ Φ
s
i (π

∗) =

argmaxai∈Xi(s,π
∗
−i(s))

q
π∗

i (s,ai,π
∗
−i(s)). We now show that for any i ∈ [n], for any

πi ∈ Fi(π∗
−i), v

π∗

i (s) ≥ v(πi,π
∗
−i)

i (s) for all s ∈ S. Take any policy πi ∈ Fi(π∗
−i). Note

that πi may not be Markov, so we denote {πi(h:t)}t∈N = {a(t)
i }t∈N. Then, for all

s(0) ∈ S,

v
π∗

i (s(0))

= q
π∗

i (s(0),π∗
i (s

(0)),π∗
−i(s

(0)))

= max
ai∈Xi(s

(0),π∗
−i(s

(0)))
q
π∗

i (s(0),ai,π
∗
−i(s

(0)))

= max
ai∈X (s(0),π∗

−i(s
(0)))

ri(s
(0),ai,π

∗
−i(s

(0))) + E
s(1)∼ρ(·|s(0),ai,π

∗
−i(s

(0)))
[γv

π∗

i (s(1))]

≥ ri(s(0),a
(0)
i ,π∗

−i(s
(0))) + E

s(1)∼ρ(·|s(0),a
(0)
i ,π∗

−i(s
(0)))

[γv
π∗

i (s(1))] (14.5)

For any s(0) ∈ S, define v′i(s
(0))

.
= ri(s

(0),a
(0)
i ,π∗

−i(s
(0))) +

Es(1)∼ρ(·|s(0),a
(0)
i ,π∗

−i(s
(0)))[γv

π∗

i (s(1))] . Since vπ
∗

i (s) ≥ v′i(s) for all i ∈ [n], s ∈ S, we
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have for any s(0) ∈ S

v
π∗

i (s(0))

≥ ri(s(0),a
(0)
i ,π∗

−i(s
(0))) + E

s(1)∼ρ(·|s(0),a
(0)
i ,π∗

−i(s
(0)))

[γv
π∗

i (s(1))]

≥ ri(s(0),a
(0)
i ,π∗

−i(s
(0))) + E

s(1)∼ρ(·|s(0),a
(0)
i ,π∗

−i(s
(0)))

[γv′i(s
(1))]

≥ ri(s(0),a
(0)
i ,π∗

−i(s
(0)))

+ E
s(1)∼ρ(·|s(0),a

(0)
i ,π∗

−i(s
(0)))

[
γ

(
ri(s

(1),a
(1)
i ,π∗

−i(s
(1)))

+ E
s(2)∼ρ(·|s(1),a

(1)
i ,π∗

−i(s
(1))

[γv
π∗

i (s(2))]

)]
≥ ri(s(0),a

(0)
i ,π∗

−i(s
(0)))

+ E
s(1)∼ρ(·|s(0),a

(0)
i ,π∗

−i(s
(0)))

[
γ

(
ri(s

(1),a
(1)
i ,π∗

−i(s
(1)))

+ E
s(2)∼ρ(·|s(1),a

(1)
i ,π∗

−i(s
(1))

[γv′i(s
(2))]

)]
... (14.6)

≥ v(πi,π
∗
−i)

i (s)

where in Equation (14.6), we recursively expand v′i and eliminate vπ∗
using Equa-

tion (14.5). We therefore conclude that for all states s ∈ S, and for all i ∈ [n],

v
π∗

i (s) ≥ max
πi∈Fi(π

∗
−i)
v
(πi,π

∗
−i)

i (s).

Lemma 12.3.1.

Given a Markov pseudo-gameM for which Assumption 12.2.1 holds, a Markov policy

profile π∗ ∈ Fmarkov(π∗) is a GMPE if and only if ϕ(s,π∗) = 0, for all states s ∈ S. Similarly,

a policy profile π∗ ∈ F (π∗) is an GNE if and only if φ(π∗) = 0.
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Proof of Lemma 12.3.1

We first prove the result for state exploitability.

(π∗ is a

MPGNE =⇒ ϕ(s,π∗) = 0 for all s ∈ S): Suppose that π∗ is a

MPGNE, i.e., for all players i ∈ [n], vπ
∗

i (s) ≥ maxπi∈Fi(π
∗
−i)
v
(πi,π

∗
−i)

i (s) for all state

s ∈ S. Then, for all state s ∈ S, we have

∀i ∈ [n], max
πi∈Fi(π

∗
−i)
v
(πi,π

∗
−i)

i (s)− vπ
∗

i (s) = 0 (14.7)

Summing up across all players i ∈ [n], we get

ϕ(s,π∗) =
∑
i∈[n]

max
πi∈Fi(π

∗
−i)
v
(πi,π

∗
−i)

i (s)− vπ
∗

i (s) = 0 (14.8)

(ϕ(s,π∗) = 0 for all s ∈ S =⇒ π∗ is a

MPGNE): Suppose we have π∗ ∈ Fmarkov(π∗) and ϕ(s,π∗) = 0 for all s ∈ S. That is,

for any s ∈ S

ϕ(s,π∗) =
∑
i∈[n]

max
πi∈Fi(π

∗
−i)
v
(πi,π

∗
−i)

i (s)− vπ
∗

i (s) = 0. (14.9)

Since for any i ∈ [n], π∗
i ∈ Fmarkov

i (π∗
−i), maxπi∈Fmarkov

i (π∗
−i)
v
(πi,π

∗
−i)

i (s) − v
π∗

i ≥

v
π∗

i (s)− vπ
∗

i (s) = 0. As a result, we must have for all player i ∈ [n],

v
π∗

i (s) = max
πi∈F (π∗

−i)
v
(πi,π

∗
−i)

i (s), ∀s ∈ S (14.10)

Thus, we can conclude that π∗ is a

MPGNE.

Then, we can prove results for exploitability in an analogous way.

(π∗ is a GNE =⇒ φ(π∗) = 0 ): Suppose that π∗ is a GNE, i.e., for all players i ∈ [n],

ui(π
∗) ≥ maxπi∈Fi(π

∗
−i)
ui(πi,π

∗
−i). Then, we have

∀i ∈ [n], max
πi∈Fi(π

∗
−i)
ui(πi,π

∗
−i)− ui(π∗) = 0 (14.11)

Summing up across all players i ∈ [n], we get

φ(π∗) =
∑
i∈[n]

max
πi∈Fi(π

∗
−i)
ui(πi,π

∗
−i)− ui(π∗) = 0 (14.12)
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(φ(s,π∗) = 0 =⇒ π∗ is a GNE): Suppose we have π∗ ∈ F (π∗) and φ(π∗) = 0. That

is,

φ(π∗) =
∑
i∈[n]

max
πi∈Fi(π

∗
−i)
ui(πi,π

∗
−i)− ui(π∗) = 0. (14.13)

Since for any i ∈ [n], π∗
i ∈ Fi(π∗

−i), maxπi∈Fi(π
∗
−i)
ui(πi,π

∗
−i) − ui(π∗) ≥ ui(π

∗) −

ui(π
∗) = 0. As a result, we must have for all player i ∈ [n],

ui(π
∗) = max

πi∈F (π∗
−i)
ui(πi,π

∗
−i) (14.14)

Thus, we can conclude that π∗ is a GNE.

Observation 12.3.1.

Given a Markov pseudo-gameM,

min
π∈F (π)

φ(π) = min
π∈F (π)

max
π′∈Fmarkov(π)

Ψ(π,π′) . (12.3)

Proof

The per-player maximum operator can be pulled out of the sum in the definition of

state-exploitability, because the ith player’s best-response policy is independent of

the other players’ best-response policies, given a fixed policy profile π :

∀ s ∈ S, ϕ(s,π) =
∑
i∈[n]

max
π′

i∈Fmarkov
i (π−i)

v
(π′

i,π−i)
i (s)− vπi (s) (14.15)

= max
π′∈Fmarkov(π)

∑
i∈[n]

v
(π′

i,π−i)
i (s)− vπi (s) (14.16)

= max
π′∈Fmarkov(π)

ψ(s,π,π′) (14.17)

The argument is analogous for exploitability:

φ(π) =
∑
i∈[n]

max
π′

i∈Fmarkov
i (π−i)

ui(π
′
i,π−i)− ui(π) (14.18)

= max
π′∈Fmarkov(π)

∑
i∈[n]

ui(π
′
i,π−i)− ui(π) (14.19)

= max
π′∈F (π)

Ψ(π,π′) (14.20)
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Lemma 12.3.3.

Given a Markov pseudo-gameM, for ω ∈ RΩ, suppose that ϕ(s, ·) is differentiable at ω for

all s ∈ S. If ∥∇ωφ(ω)∥= 0, then, for all states s ∈ S, ∥∇ωϕ(s,ω)∥= 0 µ-almost surely, i.e.,

µ({s ∈ S | ∥∇ωϕ(s,ω)∥= 0}) = 1. Moreover, for any ε > 0 and δ ∈ [0, 1], if supp(µ) = S

and ∥∇ωφ(ω)∥≤ ε, then with probability at least 1− δ, ∥∇ωϕ(s,ω)∥≤ ε/δ.

Proof

First, using Jensen’s inequality, by the convexity of the 2-norm ∥·∥, we have:

E
s∼µ

[
∥∇ωϕ(s,ω)∥

]
≤
∥∥∥∥ E
s∼µ

[
∇ωϕ(s,ω)

]∥∥∥∥
=

∥∥∥∥∇ω E
s∼µ

[ϕ(s,ω)]

∥∥∥∥
= ∥∇ωφ(ω)∥ .

The first claim follows directly from the fact that for all s ∈ S, ∥∇ωφ(s,ω)∥≥ 0, and

hence for the expectation Es∼µ

[
∥∇ωφ(s,ω)∥

]
to be equal to 0, its value should be

equal to zero on a set of measure 1.

Now, for the second part, by Markov’s inequality, we have: P
(
∥∇ωϕ(s,ω)∥≥ ε/δ

)
≤

Es∼µ [∥∇ωϕ(s,π)∥]
ε/δ ≤ ε

ε/δ = δ.

Lemma 12.3.4.

LetM be a Markov pseudo-game with initial state distribution µ. Given policy parameter

ω ∈ RΩ and arbitrary state distribution υ ∈ ∆(S), suppose that both ϕ(µ, ·) and ϕ(υ, ·) are

differentiable at ω , then we have: ∥∇ϕ(υ,ω)∥≤ Cbr(π(·;ω∗), µ, υ)∥∇φ(ω)∥.

Proof

In this proof, for any i ∈ [n], we define σi(ω) = ρi(·,π(·;ω);σ) as player i’s policy

in the policy profile σ(ω) = ρ(·,π(·;ω);σ). Similarly, we define ωi = πi(·;ω) as

player i’s policy in the policy profile ω = π(·;ω).
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Given a policy parametrization scheme (π,ρ,RΩ,RΣ), consider any two parameters
ω ∈ RΩ,σ ∈ RΣ, and any two initial state distributions µ, υ ∈ ∆(S), we know that∥∥∥∇ωψ(υ,ω ,σ)

∥∥∥ (14.21)

=

∥∥∥∥∥∥∇ω

∑
i∈[n]

ui(σi(ω),ω−i) − ui(ω)

∥∥∥∥∥∥ (14.22)

=

∥∥∥∥∥∥
∑
i∈[n]

∇ω (ui(σi(ω),ω−i) − ui(ω))

∥∥∥∥∥∥ (14.23)

=

∥∥∥∥∥∥∥∥
∑
i∈[n]

∇ω

E
s′∼δ

(σi(ω),ω−i)
υ

s∼δ
ω
υ

[
ri(s

′
,ρi(s

′
,π(s;ω);σ),π−i(s

′
;ω) − ri(s,π(s;ω))

]
∥∥∥∥∥∥∥∥ (14.24)

=

∥∥∥∥ ∑
i∈[n]

E
s′∼δ

(σi(ω),ω−i)
υ

s∼δ
ω
υ

[
∇a−i

q
σi(ω),ω−i
i (s

′
,ρi(s

′
,π(s

′
;ω);σ),π−i(s

′
;ω))∇ω

(
ρi(s

′
,π−i(s

′
;ω);ω),π(s

′
;ω)

)

− ∇aq
ω

i (s,π(s;ω))∇ωπ(s;ω)

]∥∥∥∥ (14.25)

≤ max
i∈[n]

max
s′,s∈S

δ
(σi(ω),ω−i)

υ (s′)δ
ω
υ (s)

δ
(σ

i
(ω),ω−i

)

µ (s′)δ
ω
µ (s)

∥∥∥∥E
s′∼δ

(σi(ω),ω−i)
µ

s∼δ
ω
µ

[
∇a−i

q
σi(ω),ω−i
i (s

′
,ρi(s

′
,π(s

′
;ω);σ),π−i(s

′
;ω))

∇ω

(
ρi(s

′
,π−i(s

′
;ω);ω),π(s

′
;ω)

)
− ∇aq

ω

i (s,π(s;ω))∇ωπ(s;ω)

]∥∥∥∥ (14.26)

≤ max
i∈[n]

max
s′,s∈S

δ
(σi(ω),ω−i)

υ (s′)δ
ω
υ (s)

δ
(σ

i
(ω),ω−i

)

µ (s′)δ
ω
µ (s)

∥∥∥∥∇ω

[
v
σi(ω),ω−i
i (µ) − v

ω

i (µ)

]∥∥∥∥ (14.27)

≤
(

1

1 − γ

)2

max
i∈[n]

max
s′,s∈S

δ
(σi(ω),ω−i)

υ (s′)δ
ω
υ (s)

µ(s′)µ(s)

∥∥∥∇ωψ(µ,ω ,σ)
∥∥∥ (14.28)

=

(
1

1 − γ

)2

max
i∈[n]

∥∥∥∥∥∥ δ
(σi(ω),ω−i)

υ

µ

∥∥∥∥∥∥
∞

∥∥∥∥∥ δ
ω
µ

µ

∥∥∥∥∥
∞

∥∥∥∇ωψ(µ,ω ,σ)
∥∥∥ (14.29)

where Equation (14.25) and Equation (14.27) are obtained by deterministic policy

gradient theorem (Silver et al., 2014), and Equation (14.28) is due to the fact that

δ
ω
µ (s) ≥ (1− γ)µ(s) for any π ∈ P , s ∈ S.

Given condition (1) of Assumption 12.3.3, fix any ω ∈ RΩ, there exists σ∗ ∈ RΣ s.t.

for all i ∈ [n], s ∈ S:

q
ω
i (s,ρi(s,π(s;ω);σ∗),π−i(s;ω)) = max

π′
i∈Fi(π(·;ω))

q
ω
i (s,π

′
i(s),π−i(s;ω)) .

339



Thus, ϕ(s,ω) = ψ(s,ω,σ∗) for all s ∈ S. Hence, plugging in the optimal best-

response policy σ = σ∗, we obtain that

∥∇ωϕ(υ,ω)∥ ≤
(

1

1− γ

)2

max
i∈[n]

∥∥∥∥∥δ
(σ∗

i (ω),ω−i)
υ

µ

∥∥∥∥∥
∞

∥∥∥∥δωµµ
∥∥∥∥
∞
∥∇ωϕ(µ,ω)∥ (14.30)

≤
(

1

1− γ

)2

max
i∈[n]

max
π′

i∈Φi(π−i(·;ω))

∥∥∥∥∥δ
(π′

i,π−i(·;ω))
υ

µ

∥∥∥∥∥
∞

∥∥∥∥δωµµ
∥∥∥∥
∞
∥∇ωϕ(µ,ω)∥

(14.31)

where eq. (14.31) is due to the fact that σ∗
i (ω) ∈ Φi(π−i(·;ω)).

Lemma 12.3.2.

Given a Markov pseudo-gameM,

min
π∈F (π)

max
π′∈Fmarkov(π)

Ψ(π,π′) = min
π∈F (π)

max
ρ∈R

Ψ(π,ρ(·,π(·))) . (12.4)

Proof

Fix π∗ ∈ Fmarkov(π∗). We want to show that

max
π′∈Fmarkov(π∗)

φ(π∗,π′) = max
ρ∈R

φ(π∗,ρ(·,π(·))) .

Define PR,π∗ .
= {π : s 7→ ρ(s,π∗(s)) | ρ ∈ R} ⊆ Pmarkov.

First, for all π′ ∈ PR,π∗
, π′(s) = ρ(s,π∗(s)) ∈ X (s,π∗(s)), for all s ∈ S, by the defi-

nition of R. Thus, π′ ∈ Fmarkov(π∗) = {π ∈ Pmarkov | ∀s ∈ S,π(s) ∈ X (s,π∗(s))}.

Therefore, PR,π∗ ⊆ Fmarkov(π∗), which implies that maxπ′∈Fmarkov(π∗) φ(π
∗,π′) ≥

maxπ′∈PR,π∗ φ(π∗,π′) = maxρ∈R φ(π∗,ρ(·,π(·))).

Moreover, for all π′ ∈ Fmarkov(π∗), π′(s) ∈ X (s,π∗(s)), for all s ∈ S, by the

definition of Fmarkov. Define ρ′ such that for all s ∈ S, ρ′(s,a) = π′(s) if a =

π∗(s), and ρ′(s,a) = a′ for some a′ ∈ X (s,a) otherwise. Note that ρ′ ∈ R, since

∀(s,a) ∈ S × A, ρ(s,a) ∈ X (s,a). Thus, as π′(s) = ρ′(s,π∗(s)), for all s ∈ S,

it follows that π′ ∈ PR,π∗
. Therefore, Fmarkov(π∗) ⊆ PR,π∗

, which implies that

maxπ′∈Fmarkov(π∗) φ(π
∗,π′) ≤ maxπ′∈PR,π∗ φ(π∗,π′) = maxρ∈R φ(π∗,ρ(·,π(·))).

Finally, we conclude that maxπ′∈Fmarkov(π∗) φ(π
∗,π′) = maxρ∈R φ(π∗,ρ(·,π(·))).
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Theorem 12.3.1.

Given a Markov pseudo-gameM, and a parameterization scheme (π,ρ,RΩ,RΣ), suppose

Assumption 12.2.1, 12.3.2, and 12.3.3 hold. For any δ > 0, set ε = δ∥Cbr(·, µ, ·)∥−1
∞ . If

Algorithm 11 is run with inputs that satisfy, ηω , ησ ≍ poly(ε, ∥∂δπ
∗

µ /∂µ∥∞, 1
1−γ , ℓ

−1
∇Ψ, ℓ

−1
Ψ ),

then for some T ∈ poly
(
ε−1, (1− γ)−1, ∥∂δπ

∗
µ /∂µ∥∞, ℓ∇Ψ, ℓΨ, diam(RΩ × RΣ), η−1

ω

)
, there

exists ω
(T)
best = ω(k) with k ≤ T that is a (ε, ε/2ℓΨ)-stationary point of the exploitability, i.e.,

there exists ω∗ ∈ RΩ s.t. ∥ω(T )
best − ω∗∥≤ ε/2ℓΨ and minh∈Dφ(ω∗)∥h∥≤ ε.

Further, for any arbitrary state distribution υ ∈ ∆(S), if ϕ(υ, ·) is differentiable at ω∗,

∥∇ωφ(υ,ω
∗)∥≤ δ, i.e., ω(T)

best is a (ε, δ)-stationary point for the expected exploitability ϕ(υ, ·).

Proof

As is common in the optimization literature (see, for instance, Davis et al. (2018)), we

consider the Moreau envelope of the exploitability, which we simply call the Moreau

exploitability, i.e.,

φ̃(ω)
.
= min

ω′∈RΩ

{
φ(ω′) + ℓ∇ψ

∥∥ω − ω′∥∥2} .

Similarly, we also consider the state Moreau exploitability, i.e., the Moreau envelope

of the state exploitability:

ϕ̃(s,ω)
.
= min

ω′∈RΩ

{
ϕ(s,ω′) + ℓ∇ψ

∥∥ω − ω′∥∥2} .

We recall that in these definitions, by our notational convention, ℓ∇ψ ≥ 0, refers

to the Lipschitz-smoothness constants of the state exploitability which in this case

we take to be the largest across all states, i.e., for all s ∈ S, (ω,σ) 7→ ψ(s,ω,σ) is

ℓ∇ψ-Lipschitz-smooth, respectively, and which we note is guaranteed to exist under

Assumption 12.3.2. Further, we note that since Ψ(ω,σ) = Es∼µ [ψ(s,ω,σ)] is a

weighted average of ψ, (ω,σ) 7→ Ψ(ω,σ) is also ℓ∇ψ-Lipschitz-smooth.

We invoke Theorem 2 of Daskalakis et al. (2020a). Although their result is stated for

gradient-dominated-gradient-dominated functions, their proof applies in the more

general case of non-convex-gradient-dominated functions.
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First, Assumption 12.3.2 guarantees that the cumulative regret Ψ is Lipschitz-smooth

w.r.t. (ω,σ). Moreover, under Assumption 12.3.2, which guarantees that σ 7→

q
ω′

i (s,ρi(s,π−i(s;ω);σ),π−i(s;ω)) is continuously differentiable for all s ∈ S and

ω,ω′ ∈ RΩ, and Assumption 12.3.3, we have that Ψ is
(∥∥∥∥∂δ

π∗
µ /∂µ

∥∥∥∥
∞
/1−γ

)
-gradient-

dominated in σ , for all ω ∈ RΩ, by Theorems 2 and 4 of Bhandari and Russo (2019).

Finally, under Assumption 12.3.2, since the policy, the reward function, and the

transition probability function are all Lipschitz-continuous, û, Ψ̂, and hence Ĝ are also

Lipschitz-continuous, since S and A are compact. Their variance must therefore be

bounded, i.e., there exists ςω , ςσ ∈ R s.t. Eh,h′ [Ĝω (ω,σ;h,h′)−∇ωΨ(ω,σ;h,h′)] ≤

ςω and Eh,h′ [Ĝσ (ω,σ;h,h′)−∇σΨ(ω,σ;h,h′)] ≤ ςσ .

Hence, under our assumptions, the assumptions of Theorem 2 of Daskalakis et al.

are satisfied. Therefore, 1/T+1
∑T

t=0∥∇φ̃(ω(t))∥≤ ε. Taking a minimum across all

t ∈ [T], we conclude
∥∥∥∇φ̃(ω(T)

best)
∥∥∥ ≤ ε.

Then, by the Lemma 3.7 of (Lin et al., 2020), there exists some ω∗ ∈ RΩ such that

∥ω(T)
best − ω∗∥≤ ε

2ℓΨ
and ω∗ ∈ RΩ

ε
.
= {ω ∈ RΩ | ∃α ∈ Dφ(ω), ∥α∥≤ ε}. That is, ω(T)

best

is a (ε, ε
2ℓΨ

)-stationary point of φ.

Furthermore, if we assume that ϕ(δ, ·) is differentiable at ω∗ for any state distribution

δ ∈ ∆(S), φ is also differentiable at ω∗. Hence, by the proof of Lemma 12.3.4, we

know that for any state distribution υ ∈ ∆(S),

∥∇ωϕ(υ,ω)∥ ≤ max
σ∗∈argmaxσ∈RΣ ψ(υ,ω ,σ)

∥∇ωψ(υ,ω,σ
∗)∥ (14.32)

≤ max
i∈[n]

max
σ∗∈argmaxσ∈RΣ ψ(υ,ω ,σ)

(14.33)

(
1

1− γ

)2
∥∥∥∥∥δ

σ∗
i (ω),ω−i

υ

µ

∥∥∥∥∥
∞

∥∥∥∥δωυµ
∥∥∥∥
∞
∥∇ωΨ(ω,σ∗)∥ (14.34)

= Cbr(ω, µ, υ)∥∇ωΨ(ω,σ∗)∥ (14.35)

1

Cbr(ω, µ, υ)
∥∇ωϕ(υ,ω)∥≤ ∥∇ωΨ(ω,σ∗)∥ (14.36)
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Therefore,

ω∗ ∈ RΩ
ε
.
= {ω ∈ RΩ | ∃α ∈ Dφ(ω), ∥α∥≤ ε} (14.37)

⊇ {ω ∈ RΩ | ∃σ∗ ∈ argmax
ω∈RΩ

Ψ(ω,σ)s.t.∥∇ωΨ(ω,σ∗)∥≤ ε} (14.38)

⊇ {ω ∈ RΩ | 1/Cbr(ω ,µ,υ)∥∇ωϕ(υ,ω)∥≤ ε} (14.39)

= {ω ∈ RΩ | ∥∇ωϕ(υ,ω)∥≤ δ} (14.40)

Therefore, we can conclude that there exists ω∗ such that ∥ω(T )
best − ω∗∥≤ ε

2ℓΨ
and

∥∇ωϕ(υ,ω)∥≤ δ for any υ. Thus, ω(T )
best is a (ε, δ)-stationary point of ϕ(υ, ·) for any

υ ∈ ∆(S).

14.1.2 Omitted Results and Proofs from Section 13.1.3

Theorem 13.1.1.

Consider a Radner economy I. Under Assumption 13.1.1, the set of recursive Radner

equilibria of I is equal to the set of GMPE of the associated Radner Markov pseudo-game

M.

Proof

Let π∗ = (X∗,Y ∗,p∗, q∗) : S → X × Y × P ×Q be an GMPE of the Radner Markov

pseudo-gameM associated with I. We want to show that it is also an RRE of I.

First, we want to show that π∗ is Markov perfect for all consumers. We can make

some easy observations: the state value for the player i ∈ [n] in the Radner Markov

pseudo-game at state s ∈ S induced by the policy π∗

v
π∗

i (s) = E
H∼νπ∗

[ ∞∑
t=0

γtr′(S(t), A(t)) | S(0) = s)

]
(14.41)

= E
H∼νπ∗

[ ∞∑
t=0

γtui(x
∗
i (S

(t)); Θ
(t)
i ) | S(0) = s)

]
(14.42)
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is equal to the consumption state value induced by (X∗,Y ∗,p∗, q∗)

v
(X∗,Y ∗,p∗,q∗)
i (s)

.
= E

H∼ν(X∗,Y ∗,p∗,q∗)

[ ∞∑
t=0

γtui

(
x∗
i (H:t); Θ

(t)
)
| S(0) = s

]
. (14.43)

as x∗
i is Markov. Since π∗ is a GMPE, we know that for any i ∈ [n]:

(x∗
i ,y

∗
i ) ∈ argmax

(xi,yi):S→Xi×Yi:∀s∈S,
(xi,yi)(s)∈Bi(ei,p

∗(s),q∗(s))

{
v
(xi,x

∗
−i,yi,y

∗
−i,p

∗,q∗)
i (s)

}
for all s ∈ S, so (X∗,Y ∗,p∗, q∗) is Markov perfect.

Next, we want to show that (X∗,Y ∗,p∗, q∗) satisfies the Walras’s law. First, we

show that for any i ∈ [n], s ∈ S, x∗
i (s) · p∗(s) + y∗

i (s) · q∗(s) − ei · p∗(s) = 0.

By way of contradiction, assume that there exists some i ∈ [n], s ∈ S such that

x∗
i (s) · p∗(s) + y∗

i (s) · q∗(s)− ei · p∗(s) ̸= 0. Note that (x∗
i (s),y

∗
i (s)) ∈ B′(s,a−i) =

B(ei,p∗(s), q∗(s)) = {(xi,yi) ∈ Xi × Yi | xi · p∗(s) + yi · q∗(s) ≤ ei · p∗(s)}, so we

must have x∗
i (s)·p∗(s)+y∗

i (s)·q∗(s)−ei ·p∗(s) < 0. By the (no saturation) condition

of Assumption 13.1.1, there exists x+
i ∈ Xi s.t. ui(x

+
i ;θi) > ui(x

∗
i (s);θi). Moreover,

since xi 7→ ui(xi;θi) is concave, for any 0 < t < 1, ui(tx
+
i + (1 − t)x∗

i (s);θi) >

ui(x
∗
i (s);θi). Since x∗

i (s) · p∗(s) + y∗
i (s) · q∗(s)− ei · p∗(s) < 0, we can pick t small

enough such that x′
i = tx+

i + (1− t)x∗
i (s) satisfies x

′

i(s) · p∗(s) + y∗
i (s) · q∗(s)− ei ·

p∗(s) ≤ 0 but x′
i ∈ Xi s.t. ui(x

+
i ;θi) > ui(x

∗
i (s);θi). Thus,

q
π∗

i (s,x′
i,x

∗
−i(s),Y

∗(s),p∗(s), q∗(s)) (14.44)

= r′i(s,x
′
i,x

∗
−i(s),Y

∗(s),p∗(s), q∗(s)) + E
S′∼ρ(S′|s,Y ∗(s))

[γv
π∗

i (S′)] (14.45)

= ui(x
′
i;θi) + E

S′∼ρ(S′|s,Y ∗(s))
[γv

π∗

i (S′)] (14.46)

> ui(x
∗
i (s);θi) + E

S′∼ρ(S′|s,Y ∗(s))
[γv

π∗

i (S′)] (14.47)

= q
π∗

i (s,X∗(s),Y ∗(s),p∗(s), q∗(s)) (14.48)

This contradicts that fact that π∗ is a GMPE since an optimal policy is supposed to

be greedy optimal (i.e., maximize the action-value function of each player over its

action space at all states) respect to optimal action value function. Thus, we know
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that for all i ∈ [n], s ∈ S, x∗
i (s) ·p∗(s)+y∗

i (s) ·q∗(s)−ei ·p∗(s) = 0. Summing across

the buyers, we get p∗(s) ·
(∑

i∈[n] x
∗
i (s)−

∑
i∈[n] ei

)
+ q∗(s) ·

(∑
i∈[n] y

∗
i (s)

)
= 0 for

any s ∈ S, which is the Walras’ law.

Finally, we want to show that (X∗,Y ∗,p∗, q∗) is feasible. We first show that∑
i∈[n] x

∗
i (s) −

∑
i∈[n] ei ≤ 0m for any s ∈ S. We proved that for any state s ∈ S,

r′n+1(s,X
∗(s),Y ∗(s),p∗(s), q∗(s)) = p∗(s) ·

(∑
i∈[n] x

∗
i (s)−

∑
i∈[n] ei

)
+ q∗(s) ·(∑

i∈[n] y
∗
i (s)

)
= 0, which implies vπ

∗

n+1(s) = 0. For any j ∈ [m], consider a

p : S → P defined by p(s) = jj for all s ∈ S and a q : s → Q defined by

q(s) = 0l for all s ∈ S. Then, we know that

0 = v
π∗

n+1 (14.49)

= q
π∗

n+1(s,X
∗(s),Y ∗(s),p∗(s), q∗(s)) (14.50)

≥ qπ
∗

n+1(s,X
∗(s),Y ∗(s),p(s), q(s)) (14.51)

= r′n+1(s,X
∗(s),Y ∗(s),p(s), q(s)) + E

S′∼ρ(S′|s,Y ∗(s))
[γv

π∗

i (S′)] (14.52)

= jj ·

∑
i∈[n]

x∗
i (s)−

∑
i∈[n]

ei

 ∀j ∈ [m] (14.53)

=
∑
i∈[n]

x∗ij(s)−
∑
i∈[n]

eij ∀j ∈ [m] (14.54)

Thus, we know that
∑

i∈[n] x
∗
i (s)−

∑
i∈[n] ei ≤ 0m for any s ∈ S. Finally, we show

that
∑

i∈[n] y
∗
i (s) ≤ 0l for all s ∈ S. By way of contradiction, suppose that for some

asset k ∈ [l], and some state s ∈ S,
∑

i∈[n] y
∗
ik(s) > 0. Then, the auctioneer can

increase its cumulative payoff by increasing q∗k(s), which contradicts the definition

of a GMPE.

Therefore, we can conclude that π∗ = (X∗,Y ∗,p∗, q∗) : S → X × Y × P × Q is a

RRE of I.

Finally, notice that the transition functions set in our game are all stochastically

concave and as such give rise action-value functions which are concave in the actions

each of player (Atakan, 2003a), and it is easy to verify that the game also satisfies all
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conditions that guarantee the existence of a GMPE (see Section 4 of (Atakan, 2003a)

for detailed proofs). Hence, by Theorem 12.2.1 which guarantees the existence of

GMPE in generalized Markov games, we can conclude that there exists an RRE

(X∗,Y ∗,p∗, q∗) in any Radner economy I.

14.1.3 Omitted Results and Proofs from Section 13.1.4

Theorem 13.1.2.

Consider a Radner economy I and the associated Radner Markov pseudo-gamesM. Let

(π,ρ,RΩ,RΣ) be a parametrization scheme forM and suppose Assumptions 12.3.2, 12.3.3,

and 13.1.1 hold. Then, the convergence results in Theorem 12.3.1 hold forM.

Proof

This results follows readily from Theorem 13.1.1 as an application of Theorem 12.3.1.

14.2 Experiments

14.2.1 Neural Projection Method

The projection method (Judd, 1992), also known as the weighted residual methods, is a

numerical technique often used to approximate solutions to complex economic models,

particularly those involving dynamic programming and dynamic stochastic general equi-

librium (DSGE) models. These models are common in macroeconomics and often don’t

have analytical solutions due to their non-linear, dynamic, and high-dimensional nature.

The projection method helps approximate these solutions by projecting the problem into a

more manageable, lower-dimensional space.

The main idea of the projection method is to express equilibrium of the dynamic economic

model as a solution to a functional equation D(f) = 0, where f : S → Rm is a function that

represent some unknown policy, D : (S → Rm)→ (S → Rn), and 0 is the zero vector. Some

classic examples of the operator D includes Euler equations and Bellman equations. A
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canonical project method consists of four steps: 1) Define a set of basis functions {ψi : S →

Rm}i∈[n] and approximate each each function f ∈ F through a linear combination of basis

functions: f̂(·;θ) =
∑n

i=1 θiψi(·); 2) Define a residual equation as a functional equation

evaluated at the approximation: R(·;θ) .
= D(f̂(·;θ)); 3) Choose some weight functions

{wi : S → R}i∈[p] over the states and find θ that solves F (θ) .
=
∫
S wi(s)R(s;θ)ds = 0 for

all i ∈ [p]. This gets the residual “close" to zero in the weighted integral sense; 4) Simulate

the optimal decision rule based on the chosen parameter θ and basis functions.

Recently, the neural projection method was developed to extend the traditional projection

method (Maliar et al., 2021; Azinovic et al., 2022; Sauzet, 2021). In the neural projection

method, neural networks are used as the functional approximators for policy functions

instead of traditional basis function approximations. In this section, we show how we can

approximate generalized Markov Perfect Nash equilibrium of generalized Markov game,

and consequently Recursive Radner Equilibrium of Radner economies, through the neural

projection method.

Assumption 14.2.1.

Given a generalized Markov gameM, assume that 1. for any i ∈ [n], s ∈ S, a−i ∈ A−i,

Xi(s,a−i)
.
= {ai ∈ Ai | gic(s,ai,a−i) ≥ 0 for all c ∈ [l]} for a collection of constraint

functions {gic : S ×A | c ∈ [l]}, where ai 7→ gic(s,ai,a−i) is concave for every c ∈ [l].

Theorem 14.2.1.

LetM be a generalized Markov game that satisfies Assumption 14.2.1. For any policy

profile π ∈ Fmarkov, π is a MPGNE if and only if there exists Lagrange multiplier policy

λ : S → Rn×l+ such that (π,λ) solves the following functional equation: for all i ∈ [n],

347



s ∈ S,

0 ∈ ∂ai
q
π
i (s,πi(s),π−i(s)) +

∑
c∈[l]

λi,c(s)∂ai
gic(s,πi(s),π−i(s)) (14.55)

∀c ∈ [l], 0 = λic(s)gic(s,πi(s),π−i(s)) (14.56)

∀c ∈ [l], 0 ≤ gic(s,a∗
i ,π−i(s)) (14.57)

(14.58)

and for all i ∈ [n], s ∈ S,

v
π
i (s) = q

π
i (s,πi(s),π−i(s)) (14.59)

Proof

First, we know that a policy profile π ∈ Fmarkov is a MPGNE if and only if it satisfies

the following generalized Bellman Optimality equations, i.e., for all i ∈ [n], s ∈ S,

v
π
i (s) = max

ai∈Xi(s,π−i(s))
ri(s,ai,π−i(s)) + Es′∼ρ(·|s,ai,π−i(s))

[γv
π
i (s

′)] (14.60)

= max
ai∈Xi(s,π−i(s))

q
π
i (s,ai,π−i(s)) (14.61)

Then, since ai 7→ q
π
i (s,ai,π−i(s)) is concave over Xi(s,π−i(s)) by Assump-

tion 12.2.1, the KKT conditions provides sufficient and necessary optimality condi-

tions for the constrained maximization problem

max
ai∈Xi(s,π−i(s))

q
π
i (s,ai,π−i(s)) (14.62)

That is, a∗
i ∈ Xi(s,π−i(s)) is a solution to eq. (14.62) if and only if there exists

{λ∗ic : S → R+}c∈[l] s.t.

0 ∈ ∂ai
q
π
i (s,a

∗
i ,π−i(s)) +

∑
c∈[l]

λ∗ic(s)∂ai
gic(s,a

∗
i ,π−i(s)) (14.63)

∀c ∈ [l], 0 = λ∗ic(s)gic(s,a
∗
i ,π−i(s)) (14.64)

∀c ∈ [l], 0 ≤ gic(s,a∗
i ,π−i(s)) (14.65)

348



Therefore, we can conclude that π ∈ Fmarkov is a MPGNE if and only if there exists

{λic : S → R+}i∈[n],c∈[l] s.t. for all i ∈ [n], s ∈ S,

0 ∈ ∂ai
q
π
i (s,πi(s),π−i(s)) +

∑
c∈[l]

λi,c(s)∂ai
gic(s,πi(s),πi(s)) (14.66)

∀c ∈ [l], 0 = λic(s)gic(s,πi(s),πi(s)) (14.67)

∀c ∈ [l], 0 ≤ gic(s,a∗
i ,π−i(s)) (14.68)

and for all i ∈ [n], s ∈ S,

v
π
i (s) = q

π
i (s,πi(s),π−i(s)) (14.69)

Therefore, for a policy profile π ∈ Fmarkov and a Lagrange multiplier policy λ : S → Rn×l+

such that (π,λ), consider the total first order violation

Ξfirst-order(π ,λ) =
∑
i∈[n]

∥∥∥∥∥∥
∫
s∈S

∂ai
q
π
i (s,πi(s),π−i(s)) +

∑
c∈[l]

λi,c(s)∂ai
gic(s,πi(s),π−i(s))ds

∥∥∥∥∥∥
2

2

(14.70)

and the average Bellman error

ΞBellman(π,λ) =
∑
i∈[n]

∥∥∥∥∥
∫
s∈S

v
π
i (s)− q

π
i (s,πi(s),π−i(s))ds

∥∥∥∥∥
2

2

. (14.71)

We can directly approximate the MPGNE through minimizing the sum of these two errors.

Typically, approximating the MPGNE using the neural projection method requires opti-

mizing both the policy profile and the Lagrange multiplier policy. However, in exchange

economy Markov pseudo-games, we derive a closed-form solution for the optimal La-

grange multiplier, allowing us to focus solely on optimizing the policy profile.

14.2.2 Implementation Details

Deterministic Case Training Details For deterministic transition probability case, for

each reward function class we randomly sampled one economy with 10 consumers, 10

commodities, 1 asset, and 5 world state. The asset return matrix R is sampled in a way

such that rokj ∼ Unif([0.5, 1.1]) for all o, k, and j. Moreover, we set the length of the

stochastic process to be 30. For the initial state, we sample each consumer’s endowment
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ei ∼ Unif([0.01, 0.1])m and normalized so that the total endowment of each commodity

add up to 1. We also sample each consumer’s type θi ∼ Unif([1.0, 5.0])m, and set the world

state to be 0. The transition probability function ρ is defined as ρ(s′ | s,Y ) = 1 for all

s(o,E ,Θ) where s′ = (o′,E′,Θ′) is defined as o′ = 0, E′ = 0.01 · 1n×m, and Θ′ = Θ.

Then, for both GAPNets method and neural projection method, we run 1000 episodes for

each learning rate candidate in a grid search manner and measure the performance in terms

of minimizing total first-order violation and average Bellman error. Finally, we pick the

best hyperparameter for the final experiments.

In the final experiments, we run GAPNets for 2000 episodes using learning rates ηω =

1× 10−5,ησ = 1× 10−5 for the linear economy, ηω = 1× 10−5,ησ = 1× 10−5 for the Cobb-

Douglas economy, and ηω = 1× 10−5,ησ = 1× 10−5 for the Leontief economy. Similarly,

we ran neural projection method for 2000 episodes using learning rates ηω = 1× 10−4 for

the linear economy, ηω = 2.5× 10−5 for the Cobb-Douglas economy, and ηω = 1× 10−4 for

the Leontief economy. In this process, we compute the exploitability of computed policy

profile through gradient ascent of the adversarial network. In specific, we ran 1000 episodes

of gradient ascent with learning rate ησ = 5× 10−5 for the linear economy, ησ = 1× 10−4

for the Cobb-Douglas economy, and ησ = 1× 10−4 for the Leontief economy.

Next, for each economy, we randomly sample 50 policy profiles and record their total

first-order violations, average Bellman errors, and exploitabilities. Finally, we normalize

the results by the average of the sampled values.

Stochastic Case Training Details For stochastic transition probability case, for each

reward function class we randomly sampled one economy with 10 consumers, 10 commodi-

ties, 1 asset, and 5 world state. The asset return matrix R is sampled in a way such that

rokj ∼ Unif([0.5, 1.1]) for all o, k, and j. Moreover, we set the length of the stochastic process

to be 30. For the initial state, we sample each consumer’s endowment ei ∼ Unif([0.01, 0.1])m

and normalized so that the total endowment of each commodity add up to 1. We also
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sample each consumer’s type θi ∼ Unif([1.0, 5.0])m, and set the world state to be 0. The

transition probability function will stochastically transition from state s(o,E ,Θ) to state

s′ = (o′,E′,Θ′) where o′ ∼ Unif({0, 1, 2, 3, 4}), E′ ∼ 0.002 + Unif([0.01, 0.1])n×m, and

Θ′ = Θ.

Then, for both GAPNets method and neural projection method, we run 1000 episodes for

each learning rate candidate in a grid search manner and measure the performance in terms

of minimizing total first-order violation and average Bellman error. Finally, we pick the

best hyperparameter for the final experiments.

In the final experiments, we run GAPNets for 2000 episodes using learning rates ηω =

1×10−5,ησ = 1×10−5 for the linear economy, ηω = 2.5×10−5,ησ = 2.5×10−5 for the Cobb-

Douglas economy, and ηω = 5× 10−5,ησ = 5× 10−5 for the Leontief economy. Similarly,

we ran neural projection method for 2000 episodes using learning rates ηω = 5× 10−5 for

the linear economy, ηω = 2.5× 10−5 for the Cobb-Douglas economy, and ηω = 5× 10−4 for

the Leontief economy. In this process, we compute the exploitability of computed policy

profile through gradient ascent of the adversarial network. In specific, we ran 1000 episodes

of gradient ascent with learning rate ησ = 7.5× 10−4 for the linear economy, ησ = 1× 10−4

for the Cobb-Douglas economy, and ησ = 1 × 10−4 for the Leontief economy. When

estimating the neural loss function—cumulative regret for the GAPNets method and total

first-order violations and average Bellman error for the neural projection method—we use

100 samples for GAPNets and 10 samples for the neural projection method. The primary

reason for this difference is the high memory consumption of the neural projection method,

which makes larger sample sizes infeasible.

Next, for each economy, we randomly sample 50 policy profiles and record their total

first-order violations, average Bellman errors, and exploitabilities. Finally, we normalize

the results by the average of the sampled values.
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14.2.3 Other Details

Programming Languages, Packages, and Licensing We ran our experiments in Python

3.7 (Van Rossum and Drake Jr, 1995), using NumPy (Harris et al., 2020), , CVXPY (Dia-

mond and Boyd, 2016), Jax (Bradbury et al., 2018), OPTAX (Bradbury et al., 2018), Haiku

(Hennigan et al., 2020), and JaxOPT (Blondel et al., 2021). All figures were graphed using

Matplotlib (Hunter, 2007).

Python software and documentation are licensed under the PSF License Agreement.

Numpy is distributed under a liberal BSD license. Pandas is distributed under a new

BSD license. Matplotlib only uses BSD compatible code, and its license is based on the PSF

license. CVXPY is licensed under an APACHE license.

Computational Resources The experiments were conducted using Google Colab, which

provides cloud-based computational resources. Specifically, we utilized an NVIDIA T4

GPU with the following specifications: GPU: NVIDIA T4 (16GB GDDR6), CPU: Intel Xeon

(2 vCPUs), RAM: 12GB, Storage: Colab-provided ephemeral storage.

Code Repository the full details of our experiments, including hyperparameter search,

final experiment configurations, and visualization code, can be found in our code repository

(https://anonymous.4open.science/r/Markov-Pseudo-Game-EC2025-DCB8).
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Chapter 15

Conclusion

This thesis addresses the computational challenge of solving general equilibrium models

by integrating techniques from computer science, optimization, and game theory. For

over half a century, researchers have sought a general numerical method to compute

equilibria in complex economies, a pursuit that began with Herbert Scarf’s foundational

work (Scarf, 1960), which itself was inspired by the works of Walras (1896), Uzawa (1960),

and Arrow and Debreu (1954). While prior methods achieved partial success in small-scale

models, no comprehensive solution existed for large, realistic economic systems. This thesis

advances the field by introducing novel optimization frameworks, theoretical guarantees,

and practical algorithms, offering a systematic resolution to this long-standing problem.

The first part of the thesis introduces variational inequalities (VIs) as a mathematical foun-

dation for modeling Walrasian economies. A new class of first-order methods, the mirror

extragradient algorithm, is developed, achieving polynomial-time convergence under the

Minty condition and Bregman continuity. These results also include the first local conver-

gence guarantees for constrained Bregman-continuous VIs without the Minty condition.

This theoretical groundwork enables the formulation of the mirror extratâtonnement process,

a price-adjustment mechanism that converges in all balanced Walrasian economies. This

process provides the first polynomial-time, globally convergent price-adjustment method

for computing Walrasian equilibria, resolving a major computational challenge in general

353



equilibrium theory. Additionally, this thesis analyzes the convergence of tâtonnement in

homothetic Fisher markets, offering a unified understanding of tâtonnement behavior across

different utility functions.

Building on these results, the second part of the thesis extends the analysis to pseudo-

games, a generalization of multiagent optimization frameworks, and their application to

Arrow-Debreu economies. A new family of uncoupled learning dynamics, called mirror

extragradient learning, is introduced, providing polynomial-time convergence guarantees

for variationally stable pseudo-games. This part then reframes Arrow-Debreu equilibria

as solutions to pseudo-games, enabling a computationally efficient characterization of

equilibria in pure exchange economies through the application of mirror extragradient

learning in the variationally stable trading post pseudo-game. This marks a significant

advance in the computation of Arrow-Debreu equilibrium in pure exchange economies, for

which no globally convergent market dynamics were known.

The final part of this thesis explores Markov pseudo-games, extending the previous frame-

works to Radner economies, which explicitly incorporate time and uncertainty. This part

extends pure equilibrium existence results in Markov games to settings with continuous

action spaces, where previously only mixed-strategy equilibria were known. A novel

learning-based approach is then introduced for computing generalized Markov perfect

equilibria (GMPE), leveraging adversarial learning techniques to compute equilibrium

policies in polynomial time. Focus then shifts to computing Radner equilibrium, an in-

herently infinite-dimensional problem. A function-approximation method inspired by

merit functions is introduced, allowing for efficient computation of a solution that satisfies

the necessary conditions of a Radner equilibrium, under suitable smoothness conditions.

These findings open a new research direction at the intersection of deep learning, reinforce-

ment learning, and mathematical economics, offering a promising path toward scalable,

data-driven economic models.
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The ordering of the three major parts is intentional and serves three key purposes. First,

the results on VIs form the mathematical backbone of the thesis and are used throughout,

requiring them to be presented first. Second, the fact that Walrasian economies can be

seen as a special case of Arrow-Debreu economies suggests a natural progression from

one to the other, with insights from Walrasian models helping to contextualize results in

Arrow-Debreu markets. Finally, Markov pseudo-games and Radner economies extend

the previous models to infinite-dimensional settings, where equilibrium solutions become

significantly more complex and require modern learning-based computational approaches.

This natural progression not only unifies classical and modern equilibrium models, but

also provides a clear research trajectory toward infinite-dimensional optimization and

economies with infinitely many commodities, a rapidly growing field in economic theory

and applied mathematics.

In summary, this thesis provides a unified computational framework for solving general

equilibrium models, integrating classical economic theory with modern optimization and

learning techniques. It resolves long-standing computational challenges in computing

Walrasian, Arrow-Debreu, and Radner equilibria, while also introducing novel algorith-

mic tools that have broader implications for optimization, game theory, and artificial

intelligence.

15.1 Future Directions

I now highlight several promising directions for future research that I find both exciting and

relevant to the public good. Rather than following the chronological order in which they

were presented in this thesis, I have organized them based on their potential to advance

research and foster the application of general equilibrium theory in real-world settings.

15.1.1 Radner Economies and Infinite-Dimensional Walrasian Economies

The Walrasian and Arrow-Debreu economy models studied in this thesis were finite-

dimensional in that they considered only a finite set of commodities. More recently,
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infinite-dimensional generalizations of these economies have been explored (Prescott

and Lucas, 1972), and equilibrium existence has been established. However, apart from

one notable work (Gao and Kroer, 2021), little is known about computing Walrasian

equilibria in infinite-dimensional settings. Advancing this research is crucial for applying

general equilibrium models to policy analysis, as macroeconomic policy models often

take the form of Radner economies, which themselves can be viewed as special cases

of infinite-dimensional Walrasian economies. Specifically, any Radner economy can be

reformulated as a Walrasian economy in which the set of goods is given by the union of

all commodities and assets across all states. Since the state space in Radner economies is

typically continuous, the resulting Walrasian economy is generally infinite-dimensional.

Indeed, the purpose of the study of Radner economies in this thesis was to push the

envelope of algorithmic general equilibrium towards infinite-dimensional economies.

In Part III, I propose one approach to solving infinite-dimensional economies, but this

merely scratches the surface of what is possible. Given the complexity of these problems,

machine learning and artificial intelligence are likely to play a pivotal role in their resolution.

Future research should focus on developing methods for even more complex stochastic and

high-dimensional economies, incorporating deep learning techniques to improve scalability

and robustness. This emerging field, at the intersection of deep learning, reinforcement

learning, optimization theory, and mathematical economics, holds immense potential.

More importantly, it offers a long-overdue opportunity to bring the transformative power

of AI to economic policy-making—an area that has remained largely untouched by these

advances for far too long.

15.1.2 Walrasian Economies

The theoretical insights and empirical validation presented in Part I suggest that the compu-

tational intractability of general equilibrium problems arises primarily from discontinuities

rather than inherent complexity. This perspective challenges long-standing assumptions
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in applied general equilibrium theory, particularly those stemming from the works of

Scarf (1960), Papadimitriou and Yannakakis (2010), Codenotti et al. (2006), and Deng and

Du (2008). Our empirical results indicate that the mirror extratâtonnement process can

compute Walrasian equilibria in cases where prior theoretical results suggested this would

be infeasible (e.g., Leontief Arrow-Debreu economies (Codenotti et al., 2006; Deng and

Du, 2008)). While I have attempted to explain these observations through the pathwise

Bregman-smoothness assumption, future work should explore specific kernel functions

and characterize the class of Walrasian economies where this assumption holds, as past

work has done (Goktas et al., 2023c). Doing so would provide deeper insights into the

computational challenges identified over the past two decades.

Moreover, our experiments demonstrate the ability of the mirror extratâtonnement process to

solve very large Leontief Arrow-Debreu economies. Since these economies are known to be

PPAD-complete (Deng and Du, 2008; Codenotti et al., 2006), there exists a polynomial-time

reduction from games to Leontief Arrow-Debreu economies. This suggests that the mirror

extratâtonnement process could also be used to solve large games in practice. Future research

should investigate such algorithms, potentially exploring formulations of Nash equilibria

as discontinuous variational inequalities satisfying the Minty condition.

15.1.3 Arrow-Debreu Economies

While the trading post pseudo-game provides a tractable characterization of Arrow-Debreu

equilibria in pure exchange economies, it remains an open question whether this approach

extends to concave Arrow-Debreu economies. Future work should explore whether the

trading post pseudo-game can be generalized to characterize all Arrow-Debreu economies,

thereby paving the way for market dynamics that converge to equilibrium in a broader

class of Arrow-Debreu economies.
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15.1.4 Fisher Markets

Future work could investigate the space of homogeneous utility functions with negative

cross-price elasticity of Hicksian demand to possibly derive faster convergence rates than

those provided in this paper. Additionally, it remains to be seen if the bound we have

provided in this paper is tight; the greatest lower bound known for the convergence of

tâtonnement in homothetic Fisher markets is O(1/t2)O(1/ε2) for Leontief markets (Cheung

et al., 2012), leaving space for improvement. Finally, Lemma 6.4.1 (Chapter 6) suggests that

to extend convergence results for tâtonnement beyond homothetic domains, one might have

to consider the Hicksian demand elasticity w.r.t. utility level rather than price.

15.1.5 Variational Inequalities

The polynomial-time best-iterate convergence of the mirror extragradient method to an

approximate strong solution has been established under the assumption that the kernel

function is strongly convex and Lipschitz-smooth. However, it is likely that the Lipschitz-

smoothness assumption can be dropped, as it does not appear necessary to show that the

distance between intermediate and final iterates decreases. This generalization would be

highly useful, given that many Bregman divergences are generated by strongly convex

functions that are not Lipschitz-smooth (e.g., Itakura-Saito Divergence (Itakura and Saito,

1968)). Another promising direction is to investigate whether the mirror extragradient

method can be shown to converge in polynomial time to an approximate strong solution in

last iterates under the Minty condition.
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